- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 勾股定理
- 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 勾股定理的应用
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
阅读下面的情景对话,然后解答问题:
老师:我们定义一种三角形,两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.
小华:等边三角形一定是奇异三角形!
小明:那直角三角形中是否存在奇异三角形呢?
问题(1):根据“奇异三角形”的定义,请你判断小华提出的猜想:“等边三角形一定是奇异三角形”是否正确?__________.(填“是”或“否”)
问题(2):已知RtΔABC中,两边长分别是
,10,,若这个三角形是奇异三角形,则第三边是__________.
问题(3):如图,以AB为斜边分别在AB的两侧作直角三角形,且AD=BD,若四边形ADBC内存在点E,使得AE=AD,CB=C

老师:我们定义一种三角形,两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.
小华:等边三角形一定是奇异三角形!
小明:那直角三角形中是否存在奇异三角形呢?
问题(1):根据“奇异三角形”的定义,请你判断小华提出的猜想:“等边三角形一定是奇异三角形”是否正确?__________.(填“是”或“否”)
问题(2):已知RtΔABC中,两边长分别是

问题(3):如图,以AB为斜边分别在AB的两侧作直角三角形,且AD=BD,若四边形ADBC内存在点E,使得AE=AD,CB=C
A.试说明:△ACE是奇异三角形. |

如图,教室的墙面ADEF与地面ABCD垂直,点P在墙面上,若PA=5,AB=8,点P到AD的距离是3,有一只蚂蚁要从点P爬到点B,它的最短行程是__________.

如图,在一棵树CD的10m高处的B点有两只猴子,它们都要到A处池塘边喝水,其中一只猴子沿树爬下走到离树20m处的池塘A处,另一只猴子爬到树顶D后直线跃入池塘的A处.如果两只猴子所经过的路程相等,试问这棵树多高?

已知:如图,等腰
的直角边
的长为1,以
边上的高
为直角边,按逆时针方向作等腰
,
与
相交于点
,若再以
为直角边按逆时针方向作等腰
,
与
相交于点
,按此作法进行下去,得到
,
,…,则
的周长是______.
















