- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 勾股定理
- 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 勾股定理的应用
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”,如图,由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形
,正方形
,正方形
的面积分别为
,
,
,若
,则
的值是( )










A.9.5 | B.9 | C.7.5 | D.7 |
如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现直角边沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD的长为________ .

“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形,如图,其直角三角形的两条直角边的长分别是2和4,则小正方形与大正方形的面积比是( )


A.1:2 ![]() | B.1:4 ![]() | C.1:5 ![]() | D.1:10 |
如图,已知所有的四边形都是正方形,所有的三角形都是直角三角形.若最大的正方形
的边长是
,则图中所有正方形的面积之和是________.



已知:如图,在Rt△ABC中,∠C=90°,AC=
,点D为BC边上一点,且BD=2AD,∠ADC=60°.则△ABD周长为_____.


如图,在长方形ABCD中,DC = 9.在DC上找一点E,沿直线AE把△AED折叠,使D点恰好落在BC上,设这一点为F,若△ABF的面积是54,求△FCE的面积.
