- 数与式
- 方程与不等式
- 函数
- 图形的性质
- SSS
- + SAS
- 用SAS直接证明三角形全等
- 用SAS间接证明三角形全等
- 全等的性质和SAS综合
- 尺规作图——作角
- 尺规作图——作三角形
- HL
- 全等的判定综合
- 全等三角形的辅助线问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,AD为△ABC的高,点H为AC的垂直平分线与BC的交点,点F为BC上一点,若∠B=2∠C,且AC=AB+BF.则
的值为( )



A.1 | B.2 | C.1.5 | D.3 |
已知点 C为线段 AB上一点,分别以 AC、BC为边在线段 AB同侧作△ACD和△BCE,且 CA=CD,CB=CE,∠ACD=∠BCE,直线 AE与 BD交于点 F



(1)如图 1,若∠ACD=60°,则∠AFD=
(2)如图 2,若∠ACD=α,则∠AFB= (用含α的式子表示),并说明理由。
(3) 将图 1 中的△ACD绕点 C顺时针旋转如图 3,连接 AE、AB、BD,∠ABD=80°,求∠EAB的度数.



(1)如图 1,若∠ACD=60°,则∠AFD=
(2)如图 2,若∠ACD=α,则∠AFB= (用含α的式子表示),并说明理由。
(3) 将图 1 中的△ACD绕点 C顺时针旋转如图 3,连接 AE、AB、BD,∠ABD=80°,求∠EAB的度数.
如图,在直角三角形ABC中,∠BCA=90
,∠A=60
,CD是角平分线,在CB上截取CE=C



A. 求证:⑴ DE=BE; ⑵ 若AC=1,AD= ![]() |
