- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 全等三角形的概念及性质
- + 三角形全等的判定
- SSS
- SAS
- 尺规作图——作角
- 尺规作图——作三角形
- HL
- 全等的判定综合
- 全等三角形的辅助线问题
- 角平分线的性质与判定
- 线段垂直平分线
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点,∠EDF=90°.
(1)(观察发现)如图①,若点E、F分别为AB、AC上的点,则图中全等三角形一共有 对;
(2)(类比探究)若将∠EDF绕点D在平面内旋转,当旋转到E、F点分别在AB、CA延长线上时,BE=AF吗?请利用图②说明理由.
(3)(解决问题)连结EF,把△EDF把绕点D在平面内旋转,当旋转到DF与△ABC的腰所在的直线垂直时,请直接写出∠BDF的度数.
(1)(观察发现)如图①,若点E、F分别为AB、AC上的点,则图中全等三角形一共有 对;
(2)(类比探究)若将∠EDF绕点D在平面内旋转,当旋转到E、F点分别在AB、CA延长线上时,BE=AF吗?请利用图②说明理由.
(3)(解决问题)连结EF,把△EDF把绕点D在平面内旋转,当旋转到DF与△ABC的腰所在的直线垂直时,请直接写出∠BDF的度数.

如图,已知△ABC中,∠ABC=90°,AB=BC,AE是∠BAC的角平分线.CD⊥AE,与AE的延长线交于D点,与AB的延长线交于F点。求证CD=
AE


如图,在△ABC中,D,E是BC边上的两点,AD=AE,BE=CD,∠1=∠2=110°,∠BAE=60°,则∠CAE的度数为( )


A.10° | B.20° |
C.30° | D.60° |
如图,把长短确定的两根木棍AB、AC的一端固定在A处,和第三根木棍BM摆出△ABC,木棍AB固定,木棍AC绕A转动,得到△ABD,这个实验说明( )


A.△ABC与△ABD不全等 |
B.有两边分别相等的两个三角形不一定全等 |
C.两边和它们的夹角分别相等的两个三角形全等 |
D.有两边和其中一边的对角分别相等的两个三角形不一定全等 |
如图,在等边三角形ABC 中,点D,E 分别在边BC,AC 上,且BD=CE,AD 与BE相交于点P,则∠APE 的度数为___________.

已知:AB⊥AC,DE⊥AB,AC=BE,BC=B
A.![]() (1)求证:BC⊥BD; (2)若点F是BC,BD的垂直平分线的交点,连接FA、F | B.填空:判断△AFE的形状是_____. |