- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 全等三角形的概念及性质
- + 三角形全等的判定
- SSS
- SAS
- 尺规作图——作角
- 尺规作图——作三角形
- HL
- 全等的判定综合
- 全等三角形的辅助线问题
- 角平分线的性质与判定
- 线段垂直平分线
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,∠ADB=∠ACB=90°,AC与BD相交于点O,且OA=OB,下列结论:①AD=BC;②AC=BD;③∠CDA=∠DCB;④CD∥AB,其中正确的有( )


A.1个 | B.2个 | C.3个 | D.4个 |
如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2.

求证:△CED是等腰直角三角形
证明:∵∠1=∠2( )
∴EC= (在一个三角形中,等角对等边)
∵∠A=∠B=90°,AE=BC
∴△AED≌△BCE( )
∴∠AED=∠ ( )
∵∠BCE+∠BEC=90°
∠ +∠BEC=90°(等量代换)
∴∠DEC=90°.
∴△CED是等腰直角三角形.

求证:△CED是等腰直角三角形
证明:∵∠1=∠2( )
∴EC= (在一个三角形中,等角对等边)
∵∠A=∠B=90°,AE=BC
∴△AED≌△BCE( )
∴∠AED=∠ ( )
∵∠BCE+∠BEC=90°
∠ +∠BEC=90°(等量代换)
∴∠DEC=90°.
∴△CED是等腰直角三角形.
如图,BD=BE,∠D=∠E,∠ABC=∠DBE=90°,BF⊥AE,且点A,C,E在同一条直线上.

(1)求证:△DAB≌△ECB;
(2)若AD=3,AF=1,求BE的长.

(1)求证:△DAB≌△ECB;
(2)若AD=3,AF=1,求BE的长.
下列结论正确的是( )
A.有两个锐角相等的两个直角三角形全等; | B.顶角和底边对应相等的两个等腰三角形全等 |
C.一条斜边对应相等的两个直角三角形全等; | D.两个等边三角形全等. |