- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 全等三角形的概念及性质
- + 三角形全等的判定
- SSS
- SAS
- 尺规作图——作角
- 尺规作图——作三角形
- HL
- 全等的判定综合
- 全等三角形的辅助线问题
- 角平分线的性质与判定
- 线段垂直平分线
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②PF=PA;③AH+BD=AB;④S四边形ABDE=
S△ABP,其中正确的是( )



A.①③ | B.①②④ | C.①②③ | D.②③ |
如图,在△ABC中,AB=AC,∠BAC=30°,点D是△ABC内一点,DB=DC,∠DCB=30°,点E是BD延长线上一点,AE=AB.

(1)求证:△ABD≌△ACD.
(2)求∠ADE的度数.
(3)试猜想线段DE,AD,DC之间的数量关系,并证明你的结论.

(1)求证:△ABD≌△ACD.
(2)求∠ADE的度数.
(3)试猜想线段DE,AD,DC之间的数量关系,并证明你的结论.
如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高,连接EF交AD于G,下列结论:①AD垂直平分EF;②EF垂直平分AD;③AD平分∠EDF;④当∠BAC为60°时,△AEF是等边三角形,其中正确的结论的个数为( )


A.2 | B.3 | C.4 | D.1 |
如图1,在等边三角形ABC中,D是AB边上的动点,以CD为一边,向上作等边三角形EDC,连接AE,
(1)求证:△DBC≌△EAC
(2)如图1,令BC=8,AC与DE交于点O,当AE⊥CE时,求AO的长.
(3)如图2,当图中的点D运动到边BA的延长线上,所作△EDC仍为等边三角形,且有AC⊥CE时,试猜想线段AE与线段CD的位置关系?并说明理由.(自己在图中画出图形后解答)
(1)求证:△DBC≌△EAC
(2)如图1,令BC=8,AC与DE交于点O,当AE⊥CE时,求AO的长.
(3)如图2,当图中的点D运动到边BA的延长线上,所作△EDC仍为等边三角形,且有AC⊥CE时,试猜想线段AE与线段CD的位置关系?并说明理由.(自己在图中画出图形后解答)
