- 数与式
- 方程与不等式
- 函数
- 一次函数的图象和性质
- 一次函数与方程、不等式
- + 一次函数的实际应用
- 一次函数的实际应用——分配方案问题
- 一次函数的实际应用——最大利润问题
- 一次函数的实际应用——行程问题
- 一次函数的实际应用——几何问题
- 一次函数的实际应用——其他问题
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,直线l1与直线
交于点
,直线l1分别交x轴、y轴于点A,B,OB=2,直线l2交x轴于点


A.![]() (1)求m的值及四边形OBPC的面积; (2)求直线l1的解析式; (3)设点Q是直线l2上的一动点,当以A、C、Q为顶点的三角形的面积等于四边形OBPC的面积时,求点Q的坐标. |
坚持农业农村优先发展,按照产业兴旺、生态宜居的总要求,统筹推进农村经济建设.洛宁县某村出售特色水果(苹果).规定如下:
如果购买新红星40箱,红富士60箱,需付款4300元;如果购买新红星100箱,红富士35箱,需付款4950元.
(1)每箱新红星、红富士的单价各多少元?
(2)某单位需要购置这两种苹果120箱,其中红富士的数量不少于新红星的一半,并且不超过60箱,如何购买付款最少?请说明理由.
品种 | 购买数量低于50箱 | 购买数量不低于50箱 |
新红星 | 原价销售 | 以八折销售 |
红富士 | 原价销售 | 以九折销售 |
如果购买新红星40箱,红富士60箱,需付款4300元;如果购买新红星100箱,红富士35箱,需付款4950元.
(1)每箱新红星、红富士的单价各多少元?
(2)某单位需要购置这两种苹果120箱,其中红富士的数量不少于新红星的一半,并且不超过60箱,如何购买付款最少?请说明理由.
某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:
(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并写出x的取值范围;
(2)若要求总利润超过14960元,有多少种不同分配方案?请列出具体方案;
(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润,甲店的B型产品以及乙店的A,B型产品的每件利润不变,该公司如何设计分配方案,使总利润达到最大?
| A型利润(元/件) | B型利润(元/件) |
甲店 | 180 | 150 |
乙店 | 120 | 110 |
(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并写出x的取值范围;
(2)若要求总利润超过14960元,有多少种不同分配方案?请列出具体方案;
(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润,甲店的B型产品以及乙店的A,B型产品的每件利润不变,该公司如何设计分配方案,使总利润达到最大?
10月期间,我市庆祝新中国成立70周年“祖国万岁”的主题灯光秀展示了两江四岸流光溢彩的壮美之景.周末,小明和小华相约一起乘轻轨去看灯光秀.已知小明家、轻轨站和小华家顺次分布在同一条笔直的公路上.小明、小华打算以各自的速度步行到轻轨站,小明出发3分钟后,小华从家里出发,走了两分钟,小华想起没带相机,立即掉头以原速的
返回家中取相机,并在家中取停留5分钟,发现时间来不及便立即打车前住轻轨站,最终比小明早到2分钟.如图是两人之间的距离与小华出发时间之间的关系,则小明家离轻轨站的距离比小华家离轻轨站的距离少_____米.


尊老助老是中华民族的传统美德,我校的小艾同学在今年元旦节前往家附近的敬老院,为老人们表演节目送上新年的祝福,当小艾同学到达敬老院时,发现拷音乐的U盘没有带,于是边打电话给爸爸边往家走,请爸爸能帮忙送来. 3分钟后,爸爸在家找到了U盘并立即前往敬老院,相遇后爸爸将U盘交给小艾,小艾立即把速度提高到之前的1.5倍跑回敬老院,这时爸爸遇到了朋友,停下与朋友交谈了2分钟后,爸爸以原来的速度前往敬老院观看小艾的表演.爸爸与小艾的距离
(米)与小艾从敬老院出发的时间
(分)之间的关系如图所示,则当小艾回到敬老院时,爸爸离敬老院还有______米.



周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.
(1)求小明骑车的速度和在甲地游玩的时间;
(2)小明从家出发多少小时后被妈妈追上?此时离家多远?
(3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.
(1)求小明骑车的速度和在甲地游玩的时间;
(2)小明从家出发多少小时后被妈妈追上?此时离家多远?
(3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.

如图,在平面直角坐标系中,直线l的表达式是
,它与两坐标轴分别交于C、D两点,且∠OCD=60º,设点A的坐标为(m,0),若以A为圆心,2为半径的⊙A与直线l相交于M、N两点,当MN=
时,m的值为( )




A.![]() | B.![]() | C.![]() ![]() | D.![]() ![]() |
如图,直线l:y=
x,点A1坐标为(1,0),过点A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1为半径画弧交x轴于点A2;再过点A2作x的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此做法进行下去.
求:(1)点B1的坐标和∠A1OB1的度数;
(2)弦A4B3的弦心距的长度.

求:(1)点B1的坐标和∠A1OB1的度数;
(2)弦A4B3的弦心距的长度.

如图,大拇指与小指尽量张开时,两指尖的距离称为指距,某项研究表明,一般情况下人的身高h是指距d的一次函数,下表是测得指距与身高的一组数据:
(1)求出h与d之间的函数关系式;
(2)某人身高为196cm,一般情况下他的指距应是多少?
(1)求出h与d之间的函数关系式;
(2)某人身高为196cm,一般情况下他的指距应是多少?

如图,在平面直角坐标系中,直线
分别与
轴、
轴交于点
,且与直线
交于
.
(1)求出点
的坐标
(2)当
时,直接写出x的取值范围.
(3)点
在x轴上,当△
的周长最短时,求此时点D的坐标
(4)在平面内是否存在点
,使以
为顶点的四边形是平行四边形?若存在,直接写出点
的坐标;若不存在,请说明理由.






(1)求出点

(2)当

(3)点


(4)在平面内是否存在点



