- 数与式
- 方程与不等式
- 函数
- 一次函数的图象和性质
- 一次函数与方程、不等式
- + 一次函数的实际应用
- 一次函数的实际应用——分配方案问题
- 一次函数的实际应用——最大利润问题
- 一次函数的实际应用——行程问题
- 一次函数的实际应用——几何问题
- 一次函数的实际应用——其他问题
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
为了减少二氧化碳的排放量,提倡绿色出行,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付(使用的前1小时免费)和会员卡支付两种支付方式,如图描述了两种方式应支付金额y(元)与骑行时间x(时)之间的函数关系,根据图象回答下列问题:

(1)图中表示会员卡支付的收费方式是 (填①或②).
(2)在图①中当x≥1时,求y与x的函数关系式.
(3)陈老师经常骑行该公司的共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算.

(1)图中表示会员卡支付的收费方式是 (填①或②).
(2)在图①中当x≥1时,求y与x的函数关系式.
(3)陈老师经常骑行该公司的共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算.
如图,在平面直角坐标系中,直线y=−2x+12与x轴交于点A,与y轴交于点B,与直线y=x交于点C.

(1)求点C的坐标.
(2)若P是x轴上的一个动点,直接写出当△POC是等腰三角形时P的坐标.
(3)在直线AB上是否存在点M,使得△MOC的面积是△AOC面积的2倍?若存在,请求出点M的坐标;若不存在,请说明理由.

(1)求点C的坐标.
(2)若P是x轴上的一个动点,直接写出当△POC是等腰三角形时P的坐标.
(3)在直线AB上是否存在点M,使得△MOC的面积是△AOC面积的2倍?若存在,请求出点M的坐标;若不存在,请说明理由.
如图,在等边三角形
中,
,点
是
边上的任意一点(点
可以与点
重合,但不与点
重合).过点
作
,垂足为
;点
作
,垂足为
;过点
作
,垂足为
.设
,
.

(1)用含
的代数式表示
,并注明
的取值范围;
(2)当
的长等于多少时,点
和点
重合?



















(1)用含



(2)当



小丽骑车从甲地到乙地,小明骑车从乙地到甲地,小丽的速度小于小明的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离
与小丽的行驶时间
之间的函数关系.请你根据图像进行探究:

(1)小丽的速度是______
,小明的速度是_________
;
(2)求线段
所表示的y与x之间的函数关系式,并写出自变量x的取值范围;
(3)若两人相距
,试求小丽的行驶时间?



(1)小丽的速度是______


(2)求线段

(3)若两人相距

如图1,在平面直角坐标系
中,点A的坐标是
,点C是x轴上的一个动点.当点C在x轴上移动时,始终保持
是等腰直角三角形(
,点A、C、P按逆时针方向排列);当点C移动到点O时,得到等腰直角三角形
(此时点P与点B重合).
(初步探究)
(1)写出点B的坐标________;
(2)点C在x轴上移动过程中,作
轴,垂足为点D,都有
,请在图2中画出当等腰直角
的顶点P在第四象限时的图形,并求证:
.
(深入探究)
(3)当点C在x轴上移动时,点P也随之运动.探究点P在怎样的图形上运动,请直接写出结论,并求出这个图形所对应的函数表达式;
(4)直接写出
的最小值为________.






(初步探究)
(1)写出点B的坐标________;
(2)点C在x轴上移动过程中,作




(深入探究)
(3)当点C在x轴上移动时,点P也随之运动.探究点P在怎样的图形上运动,请直接写出结论,并求出这个图形所对应的函数表达式;
(4)直接写出




如图,直线
轴于点
,直线
轴于点
,直线
轴于点
,…直线
轴于点
.函数
的图像与直线
分别变于点
;函数
的图像与直线
分别交于点
,如果
的面积记的作
,四边形
的面积记作
,四边形
的面积记作
,…四边形
的面积记作
,那么
________.
























如图1,在三角形
中,把
绕点
顺时针旋转
得到
,把
绕点
逆时针旋转
,得到
,连接
,过点
作
的垂线,交
于点
,交
于点
.
(特例尝试)如图2,当
时,
①求证:
;
②猜想
与
的数量关系并说明理由.
(理想论证)在图1中,当
为任意三角形时,②中
与
的数量关系还成立吗?请给予证明.
(拓展应用)如图3,直线
与
轴,
轴分别交于
、
两点,分别以
,
为直角边在第二、一象限内作等腰
和等腰
,连接
,交
轴于点
.试猜想
的长是否为定值,若是,请求出这个值;若不是,请说明理由.
















(特例尝试)如图2,当

①求证:

②猜想


(理想论证)在图1中,当



(拓展应用)如图3,直线














定义:在平面直角坐标系中,把任意点
与点
之间的距离
叫做曼哈顿距离(
),则原点
与函数
图像上一点
的曼哈顿距离
,则点
的坐标为___________.









甲、乙两车分别从A、B两地同时出发,在同一条公路上,匀速行驶,相向而行,到两车相遇时停止.甲车行驶一段时间后,因故停车0.5小时,故障解除后,继续以原速向B地行驶,两车之间的路程y(千米)与出发后所用时间x(小时)之间的函数关系如图所示.

(1)求甲、乙两车行驶的速度V甲、V乙.
(2)求m的值.
(3)若甲车没有故障停车,求可以提前多长时间两车相遇.

(1)求甲、乙两车行驶的速度V甲、V乙.
(2)求m的值.
(3)若甲车没有故障停车,求可以提前多长时间两车相遇.
金松科技生态农业养殖有限公司种植和销售一种绿色羊肚菌,已知该羊肚菌的成本是12元/千克,规定销售价格不低于成本,又不高于成本的两倍.经过市场调查发现,某天该羊肚菌的销售量y(千克)与销售价格x(元/千克)的函数关系如下图所示:

(1)求y与x之间的函数解析式;
(2)求这一天销售羊肚菌获得的利润W的最大值;
(3)若该公司按每销售一千克提取1元用于捐资助学,且保证每天的销售利润不低于3600元,问该羊肚菌销售价格该如何确定.

(1)求y与x之间的函数解析式;
(2)求这一天销售羊肚菌获得的利润W的最大值;
(3)若该公司按每销售一千克提取1元用于捐资助学,且保证每天的销售利润不低于3600元,问该羊肚菌销售价格该如何确定.