- 数与式
- 方程与不等式
- 函数
- 一次函数的图象和性质
- 一次函数与方程、不等式
- + 一次函数的实际应用
- 一次函数的实际应用——分配方案问题
- 一次函数的实际应用——最大利润问题
- 一次函数的实际应用——行程问题
- 一次函数的实际应用——几何问题
- 一次函数的实际应用——其他问题
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
温州瓯柑,声名远播.某经销商欲将仓库的120吨瓯柑运往A,B两地销售.运往A,B两地的瓯柑(吨)和每吨的运费如下表.设仓库运往A地的瓯柑为x吨,且x为整数.
(1)设仓库运往A,B两地的总运费为y元.
①将表格补充完整.
②求y关于x的函数表达式.
(2)若仓库运往A地的费用不超过运往A,B两地费用的
,求总运费的最小值.
| 瓯柑(吨) | 运费(元/吨) |
A地 | x | 20 |
B地 | | 30 |
(1)设仓库运往A,B两地的总运费为y元.
①将表格补充完整.
②求y关于x的函数表达式.
(2)若仓库运往A地的费用不超过运往A,B两地费用的

一天,小张从家里骑自行车到图书馆还书,小张离家的路程S(米)关于时间t(分)的函数关系如图,去图书馆时的平均车速为180米/分,从图书馆返回时平均车速_______米/分. 

如图,直线y=
x+8与x轴,y轴分别交于点A,B,直线y=x+1与直线AB交于点C,与y轴交于点D.

(1)求点C的坐标.
(2)求△BDC的面积.
(3)如图,P是y轴正半轴上的一点,Q是直线AB上的一点,连接PQ.

①若PQ∥x轴,且点A关于直线PQ的对称点A′恰好落在直线CD上,求PQ的长.
②若△BDC与△BPQ全等(点Q不与点C重合),请写出所有满足要求的点Q坐标(直接写出答案).


(1)求点C的坐标.
(2)求△BDC的面积.
(3)如图,P是y轴正半轴上的一点,Q是直线AB上的一点,连接PQ.

①若PQ∥x轴,且点A关于直线PQ的对称点A′恰好落在直线CD上,求PQ的长.
②若△BDC与△BPQ全等(点Q不与点C重合),请写出所有满足要求的点Q坐标(直接写出答案).
某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司62辆A,B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:
注:载客量指的是每辆客车最多可载该校师生的人数.
(1)设租用A型号客车x辆,租车总费用为y元,求y与x的函数表达式,并写出x的取值范围;
(2)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案最省钱?
型号 | 载客量 | 租金单价 |
A | 30人/辆 | 380元/辆 |
B | 20人/辆 | 280元/辆 |
注:载客量指的是每辆客车最多可载该校师生的人数.
(1)设租用A型号客车x辆,租车总费用为y元,求y与x的函数表达式,并写出x的取值范围;
(2)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案最省钱?
我市某化工材料经销商购进一种化工材料若干千克,成本为每千克30元,物价部门规定其销售单价不低于成本价且不高于成本价的2倍,经试销发现,日销售量
(千克)与销售单价
(元)符合一次函数关系,如图所示.

(1)求
与
之间的函数关系式,并写出自变量
的取值范围;
(2)若在销售过程中每天还要支付其他费用500元,当销售单价为多少时,该公司日获利最大?最大获利是多少元?



(1)求



(2)若在销售过程中每天还要支付其他费用500元,当销售单价为多少时,该公司日获利最大?最大获利是多少元?
某文具店购进一批纪念册,每本进价为20元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间具有某种函数关系,其对应规律如下表所示
(1)请直接写出y与x的函数关系式: .
(2)设该文店每周销售这种纪念册所获得的利润为W元,写出W与x之间的函数关系式,并求出该纪念册的销售单价定为多少元时,才能使文具店销售该纪念册每周所获利润最大?最大利润是多少?
售价x(元/本) | … | 22 | 23 | 24 | 25 | 26 | 27 | … |
销售量y(件) | … | 36 | 34 | 32 | 30 | 28 | 26 | … |
(1)请直接写出y与x的函数关系式: .
(2)设该文店每周销售这种纪念册所获得的利润为W元,写出W与x之间的函数关系式,并求出该纪念册的销售单价定为多少元时,才能使文具店销售该纪念册每周所获利润最大?最大利润是多少?
如图,直线y=-x+1和直线y=x-2相交于点P,分别与y轴交于A、B两点.
(1)求点P的坐标;
(2)求△ABP的面积;
(3)M、N分别是直线y=-x+1和y=x-2上的两个动点,且MN∥y轴,若MN=5,直接写出M、N两点的坐标.
(1)求点P的坐标;
(2)求△ABP的面积;
(3)M、N分别是直线y=-x+1和y=x-2上的两个动点,且MN∥y轴,若MN=5,直接写出M、N两点的坐标.

某电话公司开设了两种手机通讯业务,甲种业务:使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元;乙种业务:不交月租费,每通话1分钟,付话费0.6元(指市话).若一个月内通话x分钟,两种方式的费用分别为y1(元)和y2(元).
(1)分别求出y1、y2与x之间的函数关系式.
(2)根据每月可能的通话时间,作为消费者选用哪种缴费方式更实惠.
(1)分别求出y1、y2与x之间的函数关系式.
(2)根据每月可能的通话时间,作为消费者选用哪种缴费方式更实惠.
我县黄墩镇有“安徽蓝莓第一镇”的美誉,截至目前,初步形成了以良种繁育、规模种植、休闲采摘、预冷保鲜、食品加工等较为完整的蓝莓产业.某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完,直接销售是40元/斤,加工销售是130元/斤(不计损耗) 已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤
设安排x名工人采摘蓝莓,剩下的工人加工蓝莓.
(1)若基地一天的总销售收入为y元,求y与x的函数关系式;
试求如何分配工人,才能使一天的销售收入最大?并求出最大值.

(1)若基地一天的总销售收入为y元,求y与x的函数关系式;

一列快车从甲城驶往乙城,一列慢车从乙城驶往甲城,已知每隔1小时有一列速度相同的快车从甲城开往乙城,如图所示,OA是第一列快车离开甲城的路程y(单位在:千米)与运行时间x(单位:小时)的函数图象,BC是一列从乙城开往甲城的慢车距甲城的路程y(单位:千米)与运行时间x(单位:小时)的函数图象.根据图象判断以下说法正确的个数有( )
①甲乙两地之间的距离为300千米;
②点B的横坐标0.5的意义是慢车发车时间比第一列快车发车时间晚半小时;
③若慢车的速度为100千米/小时,则点C的坐标是(3.5,0);
④若慢车的速度为100千米/小时,则第二列快车出发后1小时与慢车相遇.

①甲乙两地之间的距离为300千米;
②点B的横坐标0.5的意义是慢车发车时间比第一列快车发车时间晚半小时;
③若慢车的速度为100千米/小时,则点C的坐标是(3.5,0);
④若慢车的速度为100千米/小时,则第二列快车出发后1小时与慢车相遇.

A.1个 | B.2个 | C.3个 | D.4个 |