- 数与式
- 方程与不等式
- 函数
- 一次函数的图象和性质
- 一次函数与方程、不等式
- + 一次函数的实际应用
- 一次函数的实际应用——分配方案问题
- 一次函数的实际应用——最大利润问题
- 一次函数的实际应用——行程问题
- 一次函数的实际应用——几何问题
- 一次函数的实际应用——其他问题
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
科学研究发现,海平面大气压约是100千帕,它随海拔升高而降低,海拔3000米以下,每升高100米,气压下降约1千帕:3000﹣5000米每升高100米,气压下降约0.8千帕设山的海拔高度为x米,相应的大气压为y千帕.
(1)当0<x<3000时,求y与x之间的函数关系式;
(2)周末,小明和小伙伴登山(山峰海拔小于5000米)游玩,在山顶测得大气压为63.6千帕,则该山峰海拔约为多少米?
(1)当0<x<3000时,求y与x之间的函数关系式;
(2)周末,小明和小伙伴登山(山峰海拔小于5000米)游玩,在山顶测得大气压为63.6千帕,则该山峰海拔约为多少米?
如图,在平面直角坐标系中,点A(−2,4),B(4,2),在x轴上取一点P,使点P到点A和点B的距离之和最小,则点P的坐标是_________.

甲、乙两个工程队完成某项工程,先由甲单独做10天,乙队再加入合作.工进度满足如图所示.
(1)求工作量y与工作时间x(天)之间的函数关系式;
(2)这项工程全部完成需要多少天?
(3)求乙队单独完成这项工程的天数.
(1)求工作量y与工作时间x(天)之间的函数关系式;
(2)这项工程全部完成需要多少天?
(3)求乙队单独完成这项工程的天数.

直线y=2x﹣2与x轴交于点A,与y轴交于点B.
(1)求点A,B的坐标;
(2)画出直线AB,并求△OAB的面积;
(3)点C在x轴上,且AC=AB,直接写出点C坐标.
(1)求点A,B的坐标;
(2)画出直线AB,并求△OAB的面积;
(3)点C在x轴上,且AC=AB,直接写出点C坐标.

某商场代销甲、乙两种商品,其中甲种商品进价为120元/件,售价为130元/件,乙种商品进价为100元/件,售价为150元/件.
(1)若商场用36000元购进这两种商品若干,销售完后可获利润6000元,则该商场购进甲、乙两种商品各多少件?(列方程组解答)
(2)若商场购进这两种商品共100件,设购进甲种商品x件,两种商品销售后可获总利润为y元,请写出y与x的函数关系式(不要求写出自变量x的范围),并指出购进甲种商品件数x逐渐增加时,总利润y是增加还是减少?
(1)若商场用36000元购进这两种商品若干,销售完后可获利润6000元,则该商场购进甲、乙两种商品各多少件?(列方程组解答)
(2)若商场购进这两种商品共100件,设购进甲种商品x件,两种商品销售后可获总利润为y元,请写出y与x的函数关系式(不要求写出自变量x的范围),并指出购进甲种商品件数x逐渐增加时,总利润y是增加还是减少?
甲、乙两车分别从A,B两地同时出发,沿同一条公路相向而行,相遇时甲、乙所走路程的比为
,甲、乙两车离AB中点C的路程
千米
与甲车出发时间
时
的关系图象如图所示,则下列说法错误的是( )







A.A,B两地之间的距离为180千米 |
B.乙车的速度为36千米![]() |
C.a的值为![]() |
D.当乙车到达终点时,甲车距离终点还有30千米 |
如图,已知直线
经过点
,交x轴于点A,y轴于点B,F为线段AB的中点,动点C从原点出发,以每秒1个位长度的速度沿y轴正方向运动,连接FC,过点F作直线FC的垂线交x轴于点D,设点C的运动时间为t秒.
当
时,求证:
;
连接CD,若
的面积为S,求出S与t的函数关系式;
在运动过程中,直线CF交x轴的负半轴于点G,
是否为定值?若是,请求出这个定值;若不是,请说明理由.










甲、乙两人分别骑自行车和摩托车沿相同路线由A地到相距80千米的B地,行驶过程中的函数图象如图所示,请根据图象回答下列问题:
(1)甲先出发______小时后,乙才出发;大约在甲出发______小时后,两人相遇,这时他们离A地_______千米.
(2)两人的行驶速度分别是多少?
(3)分别写出表示甲、乙的路程y(千米)与时间x(小时)之间的函数表达式(不要求写出自变量的取值范围).
(1)甲先出发______小时后,乙才出发;大约在甲出发______小时后,两人相遇,这时他们离A地_______千米.
(2)两人的行驶速度分别是多少?
(3)分别写出表示甲、乙的路程y(千米)与时间x(小时)之间的函数表达式(不要求写出自变量的取值范围).
