- 数与式
- 方程与不等式
- 函数
- 一次函数的图象和性质
- 一次函数与方程、不等式
- + 一次函数的实际应用
- 一次函数的实际应用——分配方案问题
- 一次函数的实际应用——最大利润问题
- 一次函数的实际应用——行程问题
- 一次函数的实际应用——几何问题
- 一次函数的实际应用——其他问题
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,直线
与
轴正半轴交于点
,与
轴交于点
,将
沿
翻折,使点
落在点
处,点
是线段
的中点,射线
交线段
于点
,若
为直角三角形,则
的值为__________.

















如图是甲、乙两家运输公司规定每位旅客携带行李的费用与所带行李质量之间的关系图.

(1)由图可知,行李质量只要不超过______kg,甲公司就可免费携带,如果超过了规定的质量,则每超过1 kg要付运费_______元;
(2)若设旅客携带的行李质量为x(kg),所付的行李费是y(元),请分别写出y甲与y乙(元)随x(kg)之间变化的关系式;
(3)若你准备携带45 kg的行李出行,在甲、乙两家公司中你会选择哪一家?应付行李费多少元?

(1)由图可知,行李质量只要不超过______kg,甲公司就可免费携带,如果超过了规定的质量,则每超过1 kg要付运费_______元;
(2)若设旅客携带的行李质量为x(kg),所付的行李费是y(元),请分别写出y甲与y乙(元)随x(kg)之间变化的关系式;
(3)若你准备携带45 kg的行李出行,在甲、乙两家公司中你会选择哪一家?应付行李费多少元?
记max{x,y}表示x,y两个数中的最大值,例如max{1,2}=2,max{7,7}=7,则关于x的一次函数y=max{ x+1,2x }=4,则x的值为__________.
某地城管需要从甲、乙两个仓库向A、B两地分别运送10吨和5吨的防寒物资,甲、乙两仓库分别有8吨、7吨防寒物资.从甲、乙两仓库运送防寒物资到A、B两地的运费单价(元/吨)如表1,设从甲仓库运送到A地的防寒物资为x吨(如表2).


(1)完成表2 , ;
(2)求运送的总运费y(元)与x(吨)之间的函数表达式,并直接写出x的取值范围;
(3)直接写出最低总运费.


(1)完成表2 , ;
(2)求运送的总运费y(元)与x(吨)之间的函数表达式,并直接写出x的取值范围;
(3)直接写出最低总运费.
如图,平面直角坐标系中,直线AB:y=﹣x+b交y轴于点A,交x轴于点B,S△AOB=8.

(1)求点B的坐标和直线AB的函数表达式;
(2)直线a垂直平分OB交AB于点D,交x轴于点E,点P是直线a上一动点,且在点D的上方,设点P的纵坐标为m.
①用含m的代数式表示△ABP的面积;
②当S△ABP=6时,求点P的坐标.

(1)求点B的坐标和直线AB的函数表达式;
(2)直线a垂直平分OB交AB于点D,交x轴于点E,点P是直线a上一动点,且在点D的上方,设点P的纵坐标为m.
①用含m的代数式表示△ABP的面积;
②当S△ABP=6时,求点P的坐标.
某商家销售某种商品,每件进价为40元.经过市场调查,一周的销售量y件与销售单价x元/件满足一次函数的关系,部分数据如下表:(
,物价部门规定售价不得高于80元)
(1)直接写出y与x的函数关系式:______;
(2)设一周的销售利润为S元,请求出S与x的函数关系式,并求出销售利润的最大值;
(3)该商家要使每周的销售利润不低于5000元,那么销售单价应控制在什么范围内?

销售单价x(元/件) | … | 55 | 60 | 65 | 70 | 75 |
一周的销售量y(件) | … | 450 | 400 | 350 | 300 | 250 |
(1)直接写出y与x的函数关系式:______;
(2)设一周的销售利润为S元,请求出S与x的函数关系式,并求出销售利润的最大值;
(3)该商家要使每周的销售利润不低于5000元,那么销售单价应控制在什么范围内?
如图,在平面直角坐标系中,一次函数
的图象与
轴的正半轴交于点
,与
轴交于点
,
的面积为2,动点
从点
出发,以每秒1个单位长度的速度在射线
上运动,动点
从
出发,沿
轴的正半轴与点
同时以相同的速度运动,过
作
轴交直线
于
.

(1)求直线
的解析式.
(2)当点
在线段
上运动时,设
的面积为
,点
运动的时间为
秒,求
与
的函数关系式(直接写出自变量的取值范围).
(3)过点
作
轴交直线
于
,在运动过程中(点
不与点
重合),是否存在某一时刻
(秒),使
是等腰三角形?若存在,求出时间
的值.


















(1)求直线

(2)当点








(3)过点








