- 数与式
- 方程与不等式
- 一元一次方程的应用——配套问题
- 一元一次方程的应用——工程问题
- 一元一次方程的应用——销售盈亏
- 一元一次方程的应用——比赛积分
- 一元一次方程的应用——方案选择
- 一元一次方程的应用——数字问题
- + 一元一次方程的应用——几何问题
- 一元一次方程的应用——和差倍分问题
- 一元一次方程的应用——电费和水费问题
- 一元一次方程的应用——行程问题
- 一元一次方程的应用——比例分配
- 一元一次方程的应用——日历问题
- 一元一次方程的应用——其他问题
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,已知A、B两点在数轴上所对应的数分别是2、
,点C是数轴上一点,且AC=
BC,则点C所对应的数是( )




A.0 | B.![]() | C.0或6 | D.0或8 |
如图,在数轴上,点
表示
,点
表示
,点
表示
.动点
从点
出发,沿数轴正方向以每秒
个单位的速度匀速运动;同时,动点
从点
出发,沿数轴负方向以每秒
个单位的速度匀速运动.设运动时间为
秒.
(1)当
为何值时,
、
两点相遇?相遇点
所对应的数是多少?
(2)在点
出发后到达点
之前,求
为何值时,点
到点
的距离与点
到点
的距离相等;
(3)在点
向右运动的过程中,
是
的中点,在点
到达点
之前,求
的值.













(1)当




(2)在点







(3)在点







如图,在数轴上有 A 、B 、C 、D 四个点,分别对应的数为 a ,b , c , d ,且满足 a ,b 是方程| x+7|=1的两个解(a <b),且(c -12)2 与| d -16 |互为相反数.

(1)填空: a = 、b = 、 c = 、 d = ;
(2)若线段 AB 以 3 个单位/ 秒的速度向右匀速运动,同时线段CD 以 1 单位长度/ 秒向左匀速运动,并设运动时间为t 秒,A 、B 两点都运动在线段CD 上(不与C , D 两个端点重合),若BD=2AC ,求t 的值;
(3)在(2)的条件下,线段 AB ,线段CD 继续运动,当点 B 运动到点 D 的右侧时,问是否存在时间t ,使 BC=3AD ?若存在,求t 的值;若不存在,说明理由.

(1)填空: a = 、b = 、 c = 、 d = ;
(2)若线段 AB 以 3 个单位/ 秒的速度向右匀速运动,同时线段CD 以 1 单位长度/ 秒向左匀速运动,并设运动时间为t 秒,A 、B 两点都运动在线段CD 上(不与C , D 两个端点重合),若BD=2AC ,求t 的值;
(3)在(2)的条件下,线段 AB ,线段CD 继续运动,当点 B 运动到点 D 的右侧时,问是否存在时间t ,使 BC=3AD ?若存在,求t 的值;若不存在,说明理由.
同学们都知道,
表示5与
之差的绝对值,实际上也可以理解为5与
两数在数轴上所对应的两点之间的距离.回答下列问题:
(1)
_______.
(2)找出所有符合条件的整数
,使得
成立,这样的整数是______.
(3)对于任何有理数
,
的最小值是______.
(4)对于任何有理数
,
的最小值是_____,此时
的值是______.



(1)

(2)找出所有符合条件的整数


(3)对于任何有理数


(4)对于任何有理数



如图1,已知数轴上有三点A,B,C.点A,C对应的数分别是-40和20,点B是AC的中点.

(1)请直接写出点B对应的数: ;
(2)如图2,动点P,Q分别从A,C两点同时出发向左运动,点P,Q的速度分别为2个单位长度/秒,3个单位长度/秒,点E为线段PQ的中点.设运动的时间为t秒(t > 0).
①当t为何值时,点B与点E的距离是5个单位长度?
②当点E在点A的右侧时,m▪AE+QC的值不随时间的变化而改变,请求出m的值.

(1)请直接写出点B对应的数: ;
(2)如图2,动点P,Q分别从A,C两点同时出发向左运动,点P,Q的速度分别为2个单位长度/秒,3个单位长度/秒,点E为线段PQ的中点.设运动的时间为t秒(t > 0).
①当t为何值时,点B与点E的距离是5个单位长度?
②当点E在点A的右侧时,m▪AE+QC的值不随时间的变化而改变,请求出m的值.
如图1,∠MON=90°,点A,B分别在射线OM、ON上.将射线OA绕点O沿顺时针方向以每秒9°的速度旋转,同时射线OB绕点O沿顺时针方向以每秒3°的速度旋转(如图2).设旋转时间为t(0≤t≤40,单位秒).
(1)当t=8时,∠AOB= °;
(2)在旋转过程中,当∠AOB=36°时,求t的值.
(3)在旋转过程中,当ON、OA、OB三条射线中的一条恰好平分另外两条射线组成的角(指大于0°而不超过180°的角)时,请求出t的值.
(1)当t=8时,∠AOB= °;
(2)在旋转过程中,当∠AOB=36°时,求t的值.
(3)在旋转过程中,当ON、OA、OB三条射线中的一条恰好平分另外两条射线组成的角(指大于0°而不超过180°的角)时,请求出t的值.

一条数轴上有点A、B、C,其中点A、B表示的数分别是-16、9,现以点C为折点,将数轴向右对折,若点A对应的点A’落在点B的右边,并且A’B=3,则C点表示的数是_______.

如图,数轴上点
,
表示的数
,
满足
,点
为线段
上一点(不与
,
重合),
,
两点分别从
,
同时向数轴正方向移动,点
运动速度为每秒2个单位长度,点
运动速度为每秒3个单位长度,设运动时间为
秒(
).

(1)直接写出
______,
______;
(2)若
点表示的数是0.
①
,则
的长为______(直接写出结果);
②点
,
在移动过程中,线段
,
之间是否存在某种确定的数量关系,判断并说明理由;
(3)点
,
均在线段
上移动,若
,且
到线段
的中点
的距离为3,请求出符合条件的点
表示的数.


















(1)直接写出


(2)若

①


②点




(3)点








如图,将一条长为7cm的卷尺铺平后折叠,使得卷尺自身的一部分重合,然后在重合部分(阴影处)沿与卷尺边垂直的方向剪一刀,此时卷尺被分成了三段,若这三段长度由短到长之比为1:2:4,其中没完全盖住的部分最长,则折痕对应的刻度可能是_____cm

如图,数轴上点A表示的数为﹣3,点B表示的数为3,若在数轴上存在点P,使得AP+BP=m,则称点P为点A和B的“m级精致点”,例如,原点O表示的数为0,则AO+BO=3+3=6,则称点O为点A和点B的“6级精致点”,根据上述规定,解答下列问题:
(1)若点C轴在数轴上表示的数为﹣5,点C为点A和点B的“m级精致点”,则m= ;
(2)若点D是数轴上点A和点B的“8级精致点”,求点D表示的数;
(3)如图,数轴上点E和点F分别表示的数是﹣2和4,若点G是点E和点F的“m级精致点”,且满足GE=3GF,求m的值.
(1)若点C轴在数轴上表示的数为﹣5,点C为点A和点B的“m级精致点”,则m= ;
(2)若点D是数轴上点A和点B的“8级精致点”,求点D表示的数;
(3)如图,数轴上点E和点F分别表示的数是﹣2和4,若点G是点E和点F的“m级精致点”,且满足GE=3GF,求m的值.
