- 数与式
- 方程与不等式
- 一元一次方程的应用——配套问题
- 一元一次方程的应用——工程问题
- 一元一次方程的应用——销售盈亏
- 一元一次方程的应用——比赛积分
- 一元一次方程的应用——方案选择
- 一元一次方程的应用——数字问题
- + 一元一次方程的应用——几何问题
- 一元一次方程的应用——和差倍分问题
- 一元一次方程的应用——电费和水费问题
- 一元一次方程的应用——行程问题
- 一元一次方程的应用——比例分配
- 一元一次方程的应用——日历问题
- 一元一次方程的应用——其他问题
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,已知点A、B、C是数轴上三点,O为原点,点A表示的数为-12,点B表示的数为8,点C为线段AB的中点.

(1)数轴上点C表示的数是 ;
(2)点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,同时,点Q从点B出发,以每秒1个单位长度的速度沿数轴向左匀速运动,当P、Q相遇时,两点都停止运动,设运动时间为t(t>0)秒.
①当t为何值时,点O恰好是PQ的中点;
②当t为何值时,点P、Q、C三个点中恰好有一个点是以另外两个点为端点的线段的三等分点(三等分点是把一条线段平均分成三等分的点).(直接写出结果)

(1)数轴上点C表示的数是 ;
(2)点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,同时,点Q从点B出发,以每秒1个单位长度的速度沿数轴向左匀速运动,当P、Q相遇时,两点都停止运动,设运动时间为t(t>0)秒.
①当t为何值时,点O恰好是PQ的中点;
②当t为何值时,点P、Q、C三个点中恰好有一个点是以另外两个点为端点的线段的三等分点(三等分点是把一条线段平均分成三等分的点).(直接写出结果)
(探索新知)如图1,点C将线段AB分成AC和BC两部分,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC称作互为圆周率伴侣线段.
(1)若AC=3,则AB= ;
(2)若点D也是图1中线段AB的圆周率点(不同于C点),则AC DB;

(深入研究)如图2,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.

(3)若点M、N均为线段OC的圆周率点,求线段MN的长度.
(4)图2中,若点D在射线OC上,且线段CD与以O、C、D中某两个点为端点的线段互为圆周率伴侣线段,请直接写出点D所表示的数.
(1)若AC=3,则AB= ;
(2)若点D也是图1中线段AB的圆周率点(不同于C点),则AC DB;

(深入研究)如图2,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.

(3)若点M、N均为线段OC的圆周率点,求线段MN的长度.
(4)图2中,若点D在射线OC上,且线段CD与以O、C、D中某两个点为端点的线段互为圆周率伴侣线段,请直接写出点D所表示的数.
如图所示,O为一个模拟钟面圆心,M、O、N 在一条直线上,指针OA、OB 分别从OM、ON 出发绕点 O 转动,OA 运动速度为每秒 30°,OB 运动速度为每秒10°,当一根指针与起始位置重合时,运动停止,设转动的时间为t 秒,试解决下列问题:
(1)如图①,若OA顺时针转动,OB逆时针转动,
= 秒时,OA与OB第一次重合;
(2)如图②,若OA、OB同时顺时针转动,
①当
=3秒时,∠AOB= °;
②当
为何值时,三条射线OA、OB、ON其中一条射线是另两条射线夹角的角平分线?


(1)如图①,若OA顺时针转动,OB逆时针转动,

(2)如图②,若OA、OB同时顺时针转动,
①当

②当




如图,AO=BO=50cm,OC是一条射线,OC⊥AB,一只蚂蚁由A以2cm/s的速度向B爬行;同时另一只蚂蚁由O点以3cm/s的速度沿OC方向爬行.问:是否存在这样的时刻,使两只小蚂蚁与点O点组成的三角形面积为450cm2?

如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(其中∠P=30°)的直角顶点放在点O处,一边OQ在射线OA上,另一边OP与OC都在直线AB的上方.将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.
(1)如图2,经过t秒后,OP恰好平分∠BOC.
①求t的值;
②此时OQ是否平分∠AOC?请说明理由;
(2)若在三角板转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠POQ?请说明理由;
(3)在(2)问的基础上,经过多少秒OC平分∠POB?(直接写出结果).
(1)如图2,经过t秒后,OP恰好平分∠BOC.
①求t的值;
②此时OQ是否平分∠AOC?请说明理由;
(2)若在三角板转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠POQ?请说明理由;
(3)在(2)问的基础上,经过多少秒OC平分∠POB?(直接写出结果).

如图,在数轴上有A、B两点,所表示的数分别为a、a+4,A点以每秒3个单位长度的速度向正方向运动,同时B点以每秒1个单位长度的速度也向正方向运动,设运动时间为t秒.

(1)运动前线段AB的长为 ,t秒后,A点运动的距离可表示为 , B点运动距离可表示为
(2)当t为何值时,A、B两点重合,并求出此时A点所表示的数(用含有a的式子表示);
(3)在上述运动的过程中,若P为线段AB的中点,O为数轴的原点,当a=-8时,是否存在这样的值,使得线段PO=5,若存在,求出符合条件的值;若不存在,请说明理由。

(1)运动前线段AB的长为 ,t秒后,A点运动的距离可表示为 , B点运动距离可表示为
(2)当t为何值时,A、B两点重合,并求出此时A点所表示的数(用含有a的式子表示);
(3)在上述运动的过程中,若P为线段AB的中点,O为数轴的原点,当a=-8时,是否存在这样的值,使得线段PO=5,若存在,求出符合条件的值;若不存在,请说明理由。
如图,
的边
上有一动点
,从距离
点
的点
处出发,沿线段
,射线
运动,速度为
;动点
从点
出发,沿射线
运动,速度为
.
,
同时出发,设运动时间是
.

(1)当点
在
上运动时,
(用含
的代数式表示);
(2)当点
在
上运动时,
为何值,能使
?
(3)若点
运动到距离
点
的点
处停止,在点
停止运动前,点
能否追上点
?如果能,求出
的值;如果不能,请说出理由.

















(1)当点





(2)当点




(3)若点








若点
,
在数轴上对应的数为
,
,则称
为点
和
之间的距离,记作
.已知数轴上两点
,
对应的数分别为
和
,且满足
,点
为数轴上一动点,其对应的数为
.
(1)若点
到点
和
的距离相等,则点
对应的数是_________.
(2)数轴上是否存在点
,使
?若存在,请求出
的值;若不存在,请说明理由.
(3)当点
以每秒1个单位长度的速度从原点向左运动时,点
以每秒3个单位长度向左运动,点
以每秒15个单位长度向左运动,若它们同时出发,几秒钟后点
到点
和
的距离相等?















(1)若点




(2)数轴上是否存在点



(3)当点






如图,数轴上有
、
、
、
四个点,分别对应
,
,
,
四个数,其中
,
,
与
互为相反数,

(1)求
,
的值;
(2)若线段
以每秒3个单位的速度,向右匀速运动,当
_______时,点
与点
重合,当
_______时,点
与点
重合;
(3)若线段
以每秒3个单位的速度向右匀速运动的同时,线段
以每秒2个单位的速度向左匀速运动,则线段
从开始运动到完全通过
所需时间多少秒?
(4)在(3)的条件下,当点
运动到点
的右侧时,是否存在时间
,使点
与点
的距离是点
与点
的距离的4倍?若存在,请求出
值,若不存在,请说明理由.













(1)求


(2)若线段







(3)若线段




(4)在(3)的条件下,当点








如图,在数轴上A点表示数a,B点表示数b,C点表示数c,且a、c满足|a+3|+(c﹣9)2=0.若点A与点B之间的距离表示为AB=|a﹣b|,点B与点C之间的距离表示为BC=|b﹣c|,点B在点A、C之间,且满足BC=2A

A. (1)a= ,b= ,c= ; (2)若点P为数轴上一动点,其对应的数为x,当代数式|x﹣a|+|x﹣b|+|x﹣c|取得最小值时,此时x= ,最小值为 . (3)动点M从A点位置出发,沿数轴以每秒1个单位的速度向终点C运动,设运动时间为t秒,当点M运动到B点时,点N从A点出发,以每秒2个单位的速度沿数轴向C点运动,N点到达C点后,再立即以同样的速度返回,运动到终点 | B.问:在点N开始运动后,M、N两点之间的距离能否为2个单位?如果能,请求出运动的时间t的值以及此时对应的M点所表示的数:如果不能,请说明理由. |
