- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
- 排列组合的基本公式
- 计数方法
- + 组合问题
- 组合计数问题
- 图论
- 组合方法
有n(n≥5)座城市,任意两座城市之间可以建设单向航线.问:是否可以找到一种构建航线的方法,使得从一座城市至多转机一次就可以到达另外任何一座城市?
一只苍蝇和
只蜘蛛被放置在
方格表的一些交点处.一次操作包括以下步骤:首先,苍蝇移动到相邻的交点处或者原地不动,然后,每只蜘蛛移动到相邻交点处或者原地不动(同一交点可以同时停留多只蜘蛛).假设每只蜘蛛和苍蝇总是知道其他蜘蛛和苍蝇的位置.
(1)找出最小的正整数
,使得在有限次操作内,蜘蛛能够抓住苍蝇,且与其初始位置无关;
(2)在
的空间三维方格中,(1)中的结论又是怎样?
(注)题中相邻是指一个交点仅有一个坐标与另一个交点的同一坐标不同,且差值为1;题中抓住是指蜘蛛和苍蝇位于同一交点.


(1)找出最小的正整数

(2)在

(注)题中相邻是指一个交点仅有一个坐标与另一个交点的同一坐标不同,且差值为1;题中抓住是指蜘蛛和苍蝇位于同一交点.
伦敦奥运会后,某国代表团派
(
为奇质数)名金牌获得者去该国各地进行体育推广活动.若先在
个城市选择相同人数参加活动,后在另
个城市选择
个人参加活动.人员安排结束后,发现任
个人在同一城市共同参加活动的次数恰好都等于
.证明:
.








考虑
的方格表,其中每个方格内均填有数字0.每次操作可先选定三个实数
、
、
,然后选定一行,将这一行每个方格中的数都加上
(
为该方格所在的列数,
);或选定一列,将这一列每个方格中的数都加上
(
为该方格所在的行数,
),问:能否经过有限次操作,使该方格表中四个角的数字变成1,而其他格的数字仍为0?










设
、
是两个正整数(允许
与
相等),
、
是两个由若干个实数组成的集合,且
,
(允许
),集合满足:若
、
、
、
,且
,则或
且
,或
(
且
).定义一个集合
.试求出
的最小可能值(
表示集合
的元素个数).























已知若干个长方体盒子,其棱长均为不大于正奇数
的正整数(允许三棱长相同),且盒壁厚度忽略不计,每个盒子的三组对面分别染为红、蓝、黄三色,若没有一个盒子能以同色面平行的方式装入另一个盒子中,则称这些盒子是“和谐的”,求最多有多少个和谐盒子?

平面上有7个点,每三点的两两连线都组成一个不等边三角形.求证:一定可以找到4对三角形,使每对三角形的公共边既是其中一个三角形的最长边又是另一个三角形的最短边.
已知
、
、
为大于3的整数,将
的立方体分割为
个单位正方体,从一角的单位正方体起第
层、第
行、第
列的单位正方体记为
.求所有有序六元数组
的个数,使得一只蚂蚁从
出发,经过每个小正方体恰一次到达
.(注)蚂蚁可以从一个单位正方体爬到另一个与之有公共面的相邻正方体.











