- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
- 排列组合的基本公式
- 计数方法
- + 组合问题
- 组合计数问题
- 图论
- 组合方法
圆周上有
个白点,先将其中一个染为黑色(称为第一次染色),对任何正整数
,第
次染色后按逆时针方向间隔
个点将下个点染成与原来颜色相反的颜色(称为第
次染色).
(1)对给定正整数
,是否存在正整数
,使
次染色后
个点均为白色?
(2)对给定正整数
,是否存在正整数
,使
次染色后
个点均为黑色?





(1)对给定正整数




(2)对给定正整数




在平面直角坐标系中,有互不重合的水平直线和垂直直线共25条,将其染为黑、红两种颜色之一.再将黑色水平直线与黑色垂直直线的交点染为黑色;红色水平直线与红色垂直直线的交点染为红色;黑色水平直线与红色垂直直线的交点染为黄色;红色水平直线与黑色垂直直线的交点染为绿色.若黑、红点个数之比为
,则黄、绿点个数之比为______.

(1).公路上
、
两镇相距5公里,
、
往外各有两条叉路成
形状,计划在每条叉路上各建一加油站,要求每个站到
、
镇及其他站(沿公路进过
、
镇)距离互不相同,且距离均为整数公里,最长不超过15公里,此计划能否实现?
(2).若
、
向外各有3条叉路,欲建六个加油站,依然要求站与镇,站与站之间距离互不相同且为整数公路,最长者不超过28公里,能否实现?为什么?









(2).若


设
是平面上由
个点组成的点集.若在
中任取四个点,均至少有一个点与其余三个点相连,则下面结论中正确的是______.
①
中不存在与其他所有点相连的点;
②
中至少有一个点与其余所有的点均相连;
③
中至多有两个点与其余的点不相连;
④
中至多有两个点与其余所有的点均相连.



①

②

③

④

有2013位来自不同国家的代表参加一个会议,每位代表都懂得若干种语言,已知其中任意四位代表之间都可进行交谈而不需要此四位代表以外的其他人帮助,即此四人中的任意两人都能讲同一种语言而实现直接沟通,或者通过第三个人的翻译实现间接沟通,或者通过他们各自的翻译能讲的同一种语言实现低效的间接沟通,证明:可以将所有代表分配住进671个房间,每个房间住3人,使得每个房间的3人都可以交谈.
有A、B、C三人进行乒乓球比赛,当其中两个人比赛时,另一个人作裁判,此场比赛的输者在下一场中当裁判,另两个人接着比赛.比赛进行了若干场以后,已知A共赛了a场,B共赛了b场.求C赛的场数的最小值.

