- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 综合法
- 分析法
- + 反证法
- 反证法的概念辨析
- 反证法证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
用反证法证明命题“设a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是()
A.方程x2+ax+b=0没有实根 | B.方程x2+ax+b=0至多有一个实根 |
C.方程x2+ax+b=0至多有两个实根 | D.方程x2+ax+b=0恰好有两个实根 |
完成反证法证题的全过程.
题目:设a1,a2,…,a7是由数字1,2,…,7任意排成的一个数列,求证:乘积p=(a1-1)(a2-2)…(a7-7)为偶数.
证明:假设p为奇数,则________均为奇数.
因奇数个奇数之和为奇数,故有
奇数=___________________
=___________________
=0.
题目:设a1,a2,…,a7是由数字1,2,…,7任意排成的一个数列,求证:乘积p=(a1-1)(a2-2)…(a7-7)为偶数.
证明:假设p为奇数,则________均为奇数.
因奇数个奇数之和为奇数,故有
奇数=___________________
=___________________
=0.
(I)用综合法证明:a+b+c≥
(a,b,c均为正实数);
(Ⅱ)已知:x∈R,a=x2-1,b=4x+5,求证:a,b中至少有一个不小于0.

(Ⅱ)已知:x∈R,a=x2-1,b=4x+5,求证:a,b中至少有一个不小于0.
用反证法证明命题“设
,
为实数,则方程
至少有一个实根”时,要做的假设是




A.方程![]() |
B.方程![]() |
C.方程![]() |
D.方程![]() |
“一支医疗救援队里的医生和护士,包括我在内,总共是
名.下面讲到的人员情况,无论是否把我计算在内,都不会有任何变化.在这些医务人员中:①护士不少于医生;②男医生多于女护士;③女护士多于男护士;④至少有一位女医生.”由此推测这位说话人的性别和职务是( )

A.男护士 | B.女护士 | C.男医生 | D.女医生 |