- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- + 归纳推理概念辨析
- 数与式中的归纳推理
- 图与形中的归纳推理
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
中国有个名句“运筹帷幄之中,决胜千里之外.”其中的“筹”原意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式,如下表

表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推,例如6613用算筹表示就是:
,则5288用算筹可表示为________.

表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推,例如6613用算筹表示就是:

袋子里有编号为
的五个球,某位教师从袋中任取两个不同的球. 教师把所取两球编号的和只告诉甲,其乘积只告诉乙,让甲、乙分别推断这两个球的编号.
甲说:“我无法确定.”
乙说:“我也无法确定.”
甲听完乙的回答以后,甲又说:“我可以确定了.”
根据以上信息, 你可以推断出抽取的两球中

甲说:“我无法确定.”
乙说:“我也无法确定.”
甲听完乙的回答以后,甲又说:“我可以确定了.”
根据以上信息, 你可以推断出抽取的两球中
A.一定有3号球 | B.一定没有3号球 | C.可能有5号球 | D.可能有6号球 |
几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案.如图是一个数表,第1行依次写着从小到大的正整数,然后把每行相邻的两个数的和写在这两数正中间的下方,得到下一行,数表从上到下与从左到右均为无限项,求满足如下条件的最小四位整数
:第2017行的第
项为2的正整数幂.已知
,那么该款软件的激活码是( )





A.1040 | B.1045 | C.1060 | D.1065 |
甲乙两人做游戏,游戏的规则是:两人轮流从
(
必须报)开始连续报数,每人一次最少要报一个数,最多可以连续报
个数(如,一个人报数“
,
”,则下一个人可以有“
”,“
,
”,
,“
,
,
,
,
,
,
”等七种报数方法),谁抢先报到“
”则谁获胜.如果从甲开始,则甲要想获胜,第一次报的数应该是__________ .

















学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有( )
A.2人 | B.3人 | C.4人 | D.5人 |
下面几种推理过程是演绎推理的是( )
A.某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人 |
B.由三角形的性质,推测空间四面体的性质 |
C.平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分 |
D.在数列![]() ![]() ![]() ![]() ![]() |
魔术师用来表演的六枚硬币
中,有 5 枚是真币,1 枚是魔术币,它们外形完全相同,但是魔术币与真币的重量不同,现已知
和
共重 10 克,
共重 11 克,
共重 16 克,则可推断魔术币为( )





A.![]() | B.![]() | C.![]() | D.![]() |
下列结论正确的是( )
A.归纳推理是由一般到个别的推理 | B.演绎推理是由特殊到一般的推理 |
C.类比推理是由特殊到特殊的推理 | D.合情推理是演绎推理 |
洛萨·科拉茨是德国数学家,他在1937年提出了一个著名的猜想:任给一个正整数
,如果
是偶数,就将它减半(即
);如果
是奇数,则将它乘3加1(即
),不断重复这样的运算,经过有限步后,一定可以得到1,如初始正整数为6,按照上述变换规则,我们得到一个数列:6,3,10,5,16,8,4,2,1.对科拉茨猜想,目前谁也不能证明,更不能否定,如果对正整数
按照上述规则实施变换(注:1可以多次出现)后的第九项为1,则
的所有可能取值的集合为_________.






