- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- + 合情推理与演绎推理
- 归纳推理
- 类比推理
- 演绎推理
- 直接证明与间接证明
- 数学归纳法
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在平面内,三角形的面积为
,周长为
,则它的内切圆的半径
.在空间中,三棱锥的体积为
,表面积为
,利用类比推理的方法,可得三棱锥的内切球(球面与三棱锥的各个面均相切)的半径
__________ .






观察下列各式:a+b=1.a2+b2=3,a3+b3=4 ,a4+b4=7,a5+b5=11,…,则a10+b10=( )
A.28 | B.76 | C.123 | D.199 |
命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是

A.使用了归纳推理 |
B.使用了类比推理 |
C.使用了“三段论”,但推理形式错误 |
D.使用了“三段论”,但小前提错误 |
谢尔宾斯基三角形(Sierpinski triangle)是一种分形几何图形,由波兰数学家谢尔宾斯基在1915年提出,它是一个自相似的例子,其构造方法是:
(1)取一个实心的等边三角形(图1);
(2)沿三边中点的连线,将它分成四个小三角形;
(3)挖去中间的那一个小三角形(图2);
(4)对其余三个小三角形重复(1)(2)(3)(4)(图3).
制作出来的图形如图4,….

若图1(阴影部分)的面积为1,则图4(阴影部分)的面积为( )
(1)取一个实心的等边三角形(图1);
(2)沿三边中点的连线,将它分成四个小三角形;
(3)挖去中间的那一个小三角形(图2);
(4)对其余三个小三角形重复(1)(2)(3)(4)(图3).
制作出来的图形如图4,….

若图1(阴影部分)的面积为1,则图4(阴影部分)的面积为( )
A.![]() | B.![]() | C.![]() | D.![]() |
某同学在电脑上进行数学测试,共10道选择题,答完第
题(
)电脑会自动显示前
题的正确率,其中正确率
,则下列关系不可能成立的是( )





A.![]() |
B.![]() |
C.![]() |
D.![]() |
甲、乙、丙三人中,一人是教师、一人是记者、一人是医生.已知:丙的年龄比医生大;甲的年龄和记者不同;记者的年龄比乙小.根据以上情况,下列判断正确的是( )
A.甲是教师,乙是医生,丙是记者 |
B.甲是医生,乙是记者,丙是教师 |
C.甲是医生,乙是教师,丙是记者 |
D.甲是记者,乙是医生,丙是教师 |