刷题首页
题库
高中数学
题干
在平面内,三角形的面积为
,周长为
,则它的内切圆的半径
.在空间中,三棱锥的体积为
,表面积为
,利用类比推理的方法,可得三棱锥的内切球(球面与三棱锥的各个面均相切)的半径
__________
.
上一题
下一题
0.99难度 填空题 更新时间:2020-01-03 12:14:48
答案(点此获取答案解析)
同类题1
不难证明:一个边长为
,面积为
的正三角形的内切圆半径
,由此类比到空间,若一个正四面体的一个面的面积为
,体积为
,则其内切球的半径为_____________.
同类题2
在平面几何中,若一个
边形存在内切圆,将内切圆的圆心与
边形顶点连接,可将此
边形分割成
个等高的三角形,
边形的周长为
,面积为
,内切圆的半径为
,那么
,类比此方法,若一多面体的体积为
,全面积为
,且此多面体存在内切球,则此内切球的表面积为____.
同类题3
和平面解析几何的观点相同,在空间中,空间平面和曲面可以看作是适合某种条件的动点的轨迹,在空间直角坐标系
中,空间平面和曲面的方程是一个三原方程
.
(1)类比平面解析几何中直线的方程,写出①过点
,法向量为
的平面的点法式方程;②平面的一般方程;③在
,
,
轴上的截距分别为
,
,
的平面的截距式方程.(不需要说明理由)
(2)设
、
为空间中的两个定点,
,我们将曲面
定义为满足
的动点
的轨迹,试建立一个适当的空间直角坐标系
,求曲面
的方程.
(3)对(2)中的曲面
,指出和证明曲面
的对称性,并画出曲面
的直观图.
同类题4
过正三角形的外接圆的圆心且平行于一边的直线分正三角形两部分的面积比为4∶5,类比此性质:过正四面体的外接球的球心且平行于一个面的平面分正四面体两部分的体积比为_______.
同类题5
在
中,若
,
,
,则
的外接圆半径
,将此结论拓展到空间,可得出的正确结论是:在四面体
中,若
、
、
两两互相垂直,
,
,
,则四面体
的外接球半径
( )
A.
B.
C.
D.
相关知识点
推理与证明
合情推理与演绎推理
类比推理
平面与空间中的类比