- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- + 合情推理与演绎推理
- 归纳推理
- 类比推理
- 演绎推理
- 直接证明与间接证明
- 数学归纳法
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术,得诀自诩无所阻,额上纹起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:
,
,
,
……则按照以上规律,若
,具有“穿墙术”,则
_____ .






在平面几何中有如下结论:正三角形
的内切圆面积为
,外接圆面积为
,则
,推广到空间可以得到类似结论:已知正四面体
的内切球体积为
,外接球体积为
,则
____.








有编号依次为1,2,3,4,5,6的6名学生参加数学竞赛选拔,今有甲,乙,丙,丁四位老师在猜谁将获得第一名,甲猜不是3号就是5号;乙猜6号不可能;丙猜是1号,2号,4号中的一个;丁猜2号,3号,4号都不可能,若以上四位老师只有一位猜对,则猜对者是___________(填甲、乙、丙、丁)
甲、乙、丙三位同学,其中一位是班长,一位是团支书,一位是学习委员,已知丙比学习委员的年龄大,甲与团支书的年龄不同,团支书比乙的年龄小,据此推断班长是_______ .
我国南宋数学家杨辉所著的《详解九章算术》一书中,用图①的数表列出了一些正整数在三角形中的一种几何排列,俗称“杨辉三角形”,该数表的规律是每行首尾数字均为
,从第三行开始,其余的数字是它“上方”左右两个数字之和.现将杨辉三角形中的奇数换成
,偶数换成
,得到图②所示的由数字
和
组成的三角形数表,由上往下数,记第
行各数字的和为
,如
,则
____________

① ②











① ②
现有
四位同学被问到是否去过甲,乙,丙三个教师办公室时,
说:我去过的教师办公室比
多,但没去过乙办公室;
说:我没去过丙办公室;
说:我和
去过同一个教师办公室;
说:我去过丙办公室,我还和
去过同一个办公室.由此可判断
去过的教师办公室为( )









A.甲 | B.乙 | C.丙 | D.不能确定 |