- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 求离散型随机变量的均值
- 均值的性质
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本小题满分12分)某市为了宣传环保知识,举办了一次“环保知识知多少”的问卷调查活动(一
人答一份).现从回收的年龄在20~60岁的问卷中随机抽取了
份,统计结果如下面的图表所示.

(1)分别求出
,
,
,
的值;
(2)从第3,4组答对全卷的人中用分层抽样的方法抽取6人,在所抽取的6人中随机抽取2人授予“环
保之星”,记
为第3组被授予“环保之星”的人数,求
的分布列与数学期望.
人答一份).现从回收的年龄在20~60岁的问卷中随机抽取了

组号 | 年龄 分组 | 答对全卷 的人数 | 答对全卷的人数 占本组的概率 |
1 | [20,30) | 28 | ![]() |
2 | [30,40) | 27 | 0.9 |
3 | [40,50) | 5 | 0.5 |
4 | [50,60] | ![]() | 0.4 |

(1)分别求出




(2)从第3,4组答对全卷的人中用分层抽样的方法抽取6人,在所抽取的6人中随机抽取2人授予“环
保之星”,记


(本小题满分12分)
某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮训练,每人投10次,投中的次数统计如下表:
(Ⅰ)从统计数据看,甲乙两个班哪个班成绩更稳定(用数据说明)?
(Ⅱ) 若把上表数据作为学生投篮命中率,规定两个班级的1号和2号两名同学分别代表自己的班级参加比赛,每人投篮一次,将甲、乙两个班两名同学投中的次数之和分别记作
和
,试求
和
的分布列和数学期望.
某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮训练,每人投10次,投中的次数统计如下表:
学生 | 1号 | 2号 | 3号 | 4号 | 5号 |
甲班 | 6 | 5 | 7 | 9 | 8 |
乙班 | 4 | 8 | 9 | 7 | 7 |
(Ⅰ)从统计数据看,甲乙两个班哪个班成绩更稳定(用数据说明)?
(Ⅱ) 若把上表数据作为学生投篮命中率,规定两个班级的1号和2号两名同学分别代表自己的班级参加比赛,每人投篮一次,将甲、乙两个班两名同学投中的次数之和分别记作




某校对参加高校自主招生测试的学生进行模拟训练,从中抽出N名学生,其数学成绩的频率分布直方图如图所示.已知成绩在区间[90,100]内的学生人数为2人.

(1)求N的值并估计这次测试数学成绩的平均分和众数;
(2)学校从成绩在[70,100]的三组学生中用分层抽样的方法抽取12名学生进行复试,若成绩在[80,90)这一小组中被抽中的学生实力相当,且能通过复试的概率均为
,设成绩在[80,90)这一小组中被抽中的学生中能通过复试的人数为
,求
的分布列和数学期望.

(1)求N的值并估计这次测试数学成绩的平均分和众数;
(2)学校从成绩在[70,100]的三组学生中用分层抽样的方法抽取12名学生进行复试,若成绩在[80,90)这一小组中被抽中的学生实力相当,且能通过复试的概率均为



(本小题满分12分)如图所示,某班一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,其中,频率分布直方图的分组区间分别为[50,60),[60,70),[70,80),[80,90),[90,100],据此解答如下问题.


(1)求全班人数及分数在[80,100]之间的频率;
(2)现从分数在[80,100]之间的试卷中任取
份分析学生失分情况,设抽取的试卷分数在[90,100]的份数为 X ,求 X 的分布列和数学望期.


(1)求全班人数及分数在[80,100]之间的频率;
(2)现从分数在[80,100]之间的试卷中任取

2014年我国公布了新的高考改革方案,在招生录取制度改革方面,普通高校逐步推行基于统一高考和高中学业水平考试成绩的综合评价、多元录取机制,普通高校招生录取将参考考生的高中学业水平考试成绩和职业倾向性测试成绩.
为了解公众对“改革方案”的态度,随机抽查了50人,将调查情况进行整理后制成下表:

(1)完成被调查人员的频率分布直方图;

(2)若年龄在[15,25),[55,65)的被调查者中赞成人数分别为4人和3人,现从这两组的被调查者中各随机选取两人进行追踪调查,记选中的4人中不赞成“改革方案”的人数为X,求随机变量X的分布列和数学期望.
为了解公众对“改革方案”的态度,随机抽查了50人,将调查情况进行整理后制成下表:

(1)完成被调查人员的频率分布直方图;

(2)若年龄在[15,25),[55,65)的被调查者中赞成人数分别为4人和3人,现从这两组的被调查者中各随机选取两人进行追踪调查,记选中的4人中不赞成“改革方案”的人数为X,求随机变量X的分布列和数学期望.
某航空公司在
年年初招收了
名空乘人员(服务员与空警),其中“男性空乘人员”
名,“女性空乘人员”
名,并对他们的身高进行了测量,其身高(单位:
)的茎叶图如图所示.

公司决定:身高在
以上(包含
)的进入“国际航班”做空乘人员,身高在
以下的进入“国内航班”做空乘人员.
(1)求“女性空乘人员”身高的中位数和“男性空乘人员”身高的方差(方差精确到
);
(2)从“男性空乘人员”中任选
人,“女性空乘人员”中任选
人,所选
人中能飞“国际航班”的人数记为
,求
的分布列和期望.






公司决定:身高在



(1)求“女性空乘人员”身高的中位数和“男性空乘人员”身高的方差(方差精确到

(2)从“男性空乘人员”中任选





某批发市场对某种商品的日销售量(单位:吨)进行统计,最近50天的结果如下:

(1)求表中
的值
(2)若以上表频率作为概率,且每天的销售量相互独立,
①求5天中该种商品恰有2天销售量为1.5吨的概率;
②已知每吨该商品的销售利润为2千元,
表示该种商品两天销售利润的和(单位:千元),求
的分布列和期望.

(1)求表中

(2)若以上表频率作为概率,且每天的销售量相互独立,
①求5天中该种商品恰有2天销售量为1.5吨的概率;
②已知每吨该商品的销售利润为2千元,


在某批次的某种日光灯管中,随机地抽取500个样品,并对其寿命进行追踪调查,将结果列成频率分布直方图如下.根据寿命将灯管分成优等品、正品和次品三个等级,其中寿命大于或等于500天的灯管是优等品,寿命小于300天的灯管是次品,其余的灯管是正品.

(1)根据这500个数据的频率分布直方图,求出这批日光灯管的平均寿命;
(2)某人从这个批次的灯管中随机地购买了4个进行使用,若以上述频率作为概率,用X表示此人所购
买的灯管中优等品的个数,求X的分布列和数学期望.

(1)根据这500个数据的频率分布直方图,求出这批日光灯管的平均寿命;
(2)某人从这个批次的灯管中随机地购买了4个进行使用,若以上述频率作为概率,用X表示此人所购
买的灯管中优等品的个数,求X的分布列和数学期望.
某班同学利用国庆节进行社会实践,对
岁的人群随机抽取
人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的人群称为“低碳族”,否则称为“非低碳族”.现对容量为
的样本数据进行整理,得到如下各年龄段人数的频率分布直方图和统计表:


(1)补全频率分布直方图并求
的值;
(2)从
岁年龄段的“低碳族”中采用分层抽样法抽取9人参加户外低碳体验活动,其中选取3人作为领队,记选取的3名领队中年龄在
岁的人数为
,求
的分布列和期望
.





(1)补全频率分布直方图并求

(2)从





某校为了解本校学生在课外玩电脑游戏的时长情况,随机抽取了100名学生进行调查.如图是根据调查结果绘制的频率分布直方图.

(1)根据频率分布直方图估计抽取样本的平均数
和众数m(同一组中的数据用该组区间的中点值作代表);
(2)已知样本中玩电脑游戏时长在[50,60]的学生中,男生比女生多1人,现从中选3人进行回访,记选出的男生人数为ξ,求ξ的分布列与期望E(ξ).

(1)根据频率分布直方图估计抽取样本的平均数

(2)已知样本中玩电脑游戏时长在[50,60]的学生中,男生比女生多1人,现从中选3人进行回访,记选出的男生人数为ξ,求ξ的分布列与期望E(ξ).