- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 求离散型随机变量的均值
- 均值的性质
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某网络营销部门为了统计某市网友2015年11月11日在某网店的网购情况,随机抽查了该市100名网友的网购金额情况,得到如下频率分布直方图.

(1)估计直方图中网购金额的中位数;
(2)若规定网购金额超过15千元的顾客定义为“网购达人”,网购金额不超过15千元的顾客定义为“非网购达人”;若以该网店的频率估计全市“非网购达人”和“网购达人”的概率,从全市任意选取3人,则3人中“非网购达人”与“网购达人”的人数之差的绝对值为
,求
的分布列与数学期望.

(1)估计直方图中网购金额的中位数;
(2)若规定网购金额超过15千元的顾客定义为“网购达人”,网购金额不超过15千元的顾客定义为“非网购达人”;若以该网店的频率估计全市“非网购达人”和“网购达人”的概率,从全市任意选取3人,则3人中“非网购达人”与“网购达人”的人数之差的绝对值为


《环境空气质量指标(
)技术规定(试行)》如表1:
表1:空气质量指标
分组表

表2是长沙市某气象观测点在某连续4天里的记录,
指数
与当天的空气水平可见度
的情况.
表2:

表3是某气象观测点记录的长沙市2016年1月1日至1月30日
指数频数统计表.
表3:

(1)设
,根据表2的数据,求出
关于
的回归方程;
(2)小李在长沙市开了一家小洗车店,经小李统计:
指数不高于200时,洗车店平均每天亏损约200元;
指数在200至400时,洗车店平均每天收入约400元;
指数大于400时,洗车店平均每天收入约700元.
(ⅰ)计算小李的洗车店在当年1月份每天收入的数学期望.
(ⅱ)若将频率看成概率,求小李在连续三天里洗车店的总收入不低于1200元的概率.(用最小二乘法求线性回归方程系数公式
,
.)

表1:空气质量指标


表2是长沙市某气象观测点在某连续4天里的记录,



表2:

表3是某气象观测点记录的长沙市2016年1月1日至1月30日

表3:

(1)设



(2)小李在长沙市开了一家小洗车店,经小李统计:



(ⅰ)计算小李的洗车店在当年1月份每天收入的数学期望.
(ⅱ)若将频率看成概率,求小李在连续三天里洗车店的总收入不低于1200元的概率.(用最小二乘法求线性回归方程系数公式


某班同学利用国庆节进行社会实践,对
岁的人群随机抽取
人进行了一次生活习惯是否符合低碳观念的的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:

(1)补全频率分布直方图并求
的值;
(2)从
岁年龄段的“低碳族”中采用分层抽样法抽取18人参加户外低碳体验活动,其中选取3人作为领队,记选取的3名领队中年龄在
岁的人数为
,求
的分布列和期望
.



(1)补全频率分布直方图并求

(2)从





(题文)体育课上,李老师对初三(1)班
名学生进行跳绳测试,现测得他们的成绩(单位:个)全部介于
与
之间,将这些成绩数据进行分组(第一组:
,第二组:
,……,第五组:
),并绘制成如右图所示的频率分布直方图.

(1)求成绩在第四组的人数和这
名同学跳绳成绩的中位数;
(2)从成绩在第一组和第五组的同学中随机取出
名同学进行搭档训练,设取自第一组的人数为
,求
的分布列及数学期望.







(1)求成绩在第四组的人数和这

(2)从成绩在第一组和第五组的同学中随机取出



某工厂为了对新研发的产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组检测数据
如下表所示:

已知变量
具有线性负相关关系,且
现有甲、乙、丙三位同学通过计算求得其回归直线方程分别为:甲
;乙
;丙
,其中有且仅有一位同学的计算结果是正确的.
(1)试判断谁的计算结果正确?并求出
的值;
(2)若由线性回归方程得到的估计数据与检测数据的误差不超过
,则该检测数据是“理想数据”.现从检测数据中随机抽取
个,求“理想数据”个数
的分布列和数学期望.


已知变量





(1)试判断谁的计算结果正确?并求出

(2)若由线性回归方程得到的估计数据与检测数据的误差不超过



为普及学生安全逃生知识与安全防护能力,某学校高一年级举办了安全知识与安全逃生能力竞赛,该竞赛分为预赛和决赛两个阶段,预赛为笔试,决赛为技能比赛,现将所有参赛选手参加笔试的成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表.
(1)求出上表中的
的值;
(2)按规定,预赛成绩不低于90分的选手参加决赛. 已知高一(2)班有甲、乙两名同学取得决赛资格,记高一(2)班在决赛中进入前三名的人数为
,求
的分布列和数学期望.
分数(分数段) | 频数(人数) | 频率 |
![]() | 9 | x |
![]() | y | 0.38 |
![]() | 16 | 0.32 |
![]() | z | s |
合计 | p | 1 |
(1)求出上表中的

(2)按规定,预赛成绩不低于90分的选手参加决赛. 已知高一(2)班有甲、乙两名同学取得决赛资格,记高一(2)班在决赛中进入前三名的人数为


某市为了缓解交通压力,提倡低碳环保,鼓励市民乘坐公共交通系统出行.为了更好地保障市民出行,合理安排运力,有效利用公共交通资源合理调度,在某地铁站点进行试点调研市民对候车时间的等待时间(候车时间不能超过20分钟),以便合理调度减少候车时间,使市民更喜欢选择公共交通.为此在该地铁站的一些乘客中进行调查分析,得到如下统计表和各时间段人数频率分布直方图:

(Ⅰ)求出a的值;要在这些乘客中用分层抽样的方法抽取10人,在这10个人中随机抽取3人至少一人来自第二组的概率;
(Ⅱ)从这10人中随机抽取3人进行问卷调查,设这3个人共来自X个组,求X的分布列及数学期望.
分组 | 等待时间(分钟) | 人数 |
第一组 | [0,5) | 10 |
第二组 | [5,10) | a |
第三组 | [10,15) | 30 |
第四组 | [15,20) | 10 |

(Ⅰ)求出a的值;要在这些乘客中用分层抽样的方法抽取10人,在这10个人中随机抽取3人至少一人来自第二组的概率;
(Ⅱ)从这10人中随机抽取3人进行问卷调查,设这3个人共来自X个组,求X的分布列及数学期望.
2015年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,造成165.17万人受灾,5.6万人紧急转移安置,288间房屋倒塌,46.5千公顷农田受灾,直接经济损失12.99亿元.距离陆丰市222千米的梅州也受到了台风的影响,适逢暑假,小明调查了梅州某小区的50户居民由于台风造成的经济损失,将收集的数据分成
五组,并作出如下频率分布直方图(图1):

(1)试根据频率分布直方图估计小区平均每户居民的平均损失(同一组中的数据用该组区间的中点值作代表);
(2)小明向班级同学发出倡议,为该小区居民捐款.现从损失超过4000元的居民中随机抽出2户进行捐款援助,设抽出损失超过8000元的居民为
户,求
的分布列和数学期望;
(3)台风后区委会号召该小区居民为台风重灾区扣款,小明调查的50户居民捐款情况如下表,在图2表格空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?


附:临界值表参考公式:
.


(1)试根据频率分布直方图估计小区平均每户居民的平均损失(同一组中的数据用该组区间的中点值作代表);
(2)小明向班级同学发出倡议,为该小区居民捐款.现从损失超过4000元的居民中随机抽出2户进行捐款援助,设抽出损失超过8000元的居民为


(3)台风后区委会号召该小区居民为台风重灾区扣款,小明调查的50户居民捐款情况如下表,在图2表格空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?


附:临界值表参考公式:

某赛季甲乙两名篮球运动员每场比赛得分的原始记录如下:
甲运动员得分:30,27,9,14,33,25,21,12,36,23,
乙运动员得分:49,24,12,31,50,31,44,36,15,37,25,36,39
(Ⅰ)根据两组数据完成甲乙运动员得分的茎叶图,并通过茎叶图比较两名运动员成绩的平均值及稳定程度;(不要求计算出具体数值,给出结论即可)
(Ⅱ)若从甲运动员的十次比赛的得分中选出2个得分,记选出的得分超过23分的个数为
,求
的分布列和数学期望.
甲运动员得分:30,27,9,14,33,25,21,12,36,23,
乙运动员得分:49,24,12,31,50,31,44,36,15,37,25,36,39
(Ⅰ)根据两组数据完成甲乙运动员得分的茎叶图,并通过茎叶图比较两名运动员成绩的平均值及稳定程度;(不要求计算出具体数值,给出结论即可)
(Ⅱ)若从甲运动员的十次比赛的得分中选出2个得分,记选出的得分超过23分的个数为


据报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改革”引起广泛关注,为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3000人进行调查,就“是否取消英语听力”问题进行了问卷调查统计,结果如下表:
已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为0.06.
(1)现用分层抽样的方法在所有参与调查的人中抽取300人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?
(2)在持“应该保留”态度的人中,用分层抽样的方法抽取6人,再平均分成两组进行深入交流,求第一组中在校学生人数
的分布列和数学期望.
态度 调查人群 | 应该取消 | 应该保留 | 无所谓 |
在校学生 | 2100人 | 120人 | ![]() |
社会人士 | 500人 | ![]() | ![]() |
已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为0.06.
(1)现用分层抽样的方法在所有参与调查的人中抽取300人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?
(2)在持“应该保留”态度的人中,用分层抽样的方法抽取6人,再平均分成两组进行深入交流,求第一组中在校学生人数
