- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 求离散型随机变量的均值
- 均值的性质
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在清明节前,哈市某单位组织员工参加植树祭扫,林管局在植树前为了保证树苗质量,都会对树苗进行检测,现从甲、乙两种树苗中各抽测了10株树苗的高度,量出它们的高度如下:(单位:厘米)
甲:37 21 31 21 28 19 32 23 25 33
乙:10 30 47 27 46 14 26 11 43 46
(1)根据抽测结果画出茎叶图,并根据你所填写的茎叶图对两种树苗高度作比较,写出3个统计结论;
(2)如果认为甲种树苗高度超过30厘米为优质树苗,那么在已抽测的甲种10株树苗中任选两株栽种,记优质树苗的个数为


随机抽取某中学高一级学生的一次数学统测成绩得到一样本,其分组区间和频数是:
,2;
,7;
,10;
,x;[90,100],2.其频率分布直方图受到破坏,可见部分如下图所示,据此解答如下问题.

(1)求样本的人数及x的值;
(2)估计样本的众数,并计算频率分布直方图中
的矩形的高;
(3)从成绩不低于80分的样本中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为
,求
的数学期望.





(1)求样本的人数及x的值;
(2)估计样本的众数,并计算频率分布直方图中

(3)从成绩不低于80分的样本中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为


某学校随机抽取部分新生调查其上学路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学路上所需时间的范围是
,样本数据分组为
,
,
,
,
.

(1)求直方图中
的值;
(2)如果上学路上所需时间不少于60分钟的学生可申请在学校住宿,请估计学校1000名新生中有多少名学生可以申请住宿;
(3)现有6名上学路上时间小于
分钟的新生,其中2人上学路上时间小于
分钟. 从这6人中任选2人,设这2人中上学路上时间小于
分钟人数为
,求
的分布列和数学期望.







(1)求直方图中

(2)如果上学路上所需时间不少于60分钟的学生可申请在学校住宿,请估计学校1000名新生中有多少名学生可以申请住宿;
(3)现有6名上学路上时间小于





为了解某校学生参加某项测试的情况,从该校学生中随机抽取了6位同学,这6位同学的成绩(分数)如茎叶图所示.

⑴求这6位同学成绩的平均数和标准差;
⑵从这6位同学中随机选出两位同学来分析成绩的分布情况,设
为这两位同学中成绩低于平均分的人数,求
的分布列和期望.

⑴求这6位同学成绩的平均数和标准差;
⑵从这6位同学中随机选出两位同学来分析成绩的分布情况,设


小区统计部门随机抽查了区内
名网友4月1日这天的网购情况,得到如下数据统计表(图(1)).网购金额超过
千元的顾客被定义为“网购红人”,网购金额不超过
千元的顾客被定义为“非网购红人”.已知“非网购红人”与“网购红人”人数比恰为
.
(1)确定
的值,并补全频率分布直方图(图(2)).
(2)为进一步了解这
名网友的购物体验,从“非网购红人”和“网购红人”中用分层抽样的方法确定
人,若需从这
人中随机选取
人进行问卷调查,设
为选取的
人中“网购红人”的人数,求
的分布列和数学期望.




(1)确定

(2)为进一步了解这








上海世博会深圳馆1号作品《大芬丽莎》是由大芬村507名画师集体创作的999幅油画组合而成的世界名画《蒙娜丽莎》,因其诞生于大芬村,因此被命名为《大芬丽莎》.某部门从参加创作的507名画师中随机抽出100名画师,测得画师年龄情况如下表所示.

(1)频率分布表中的①、②位置应填什么数据?并在答题卡中补全频率分布直方图,
再根据频率分布直方图估计这507名画师中年龄在
岁的人数(结果取整数);
(2)在抽出的100名画师中按年龄再采用分层抽样法抽取20人参加上海世博会深
圳馆志愿者活动,其中选取2名画师担任解说员工作,记这2名画师中“年龄低于30岁”的人数为
,求
的分布列及数学期望.
分 组 (单位:岁) | 频数 | 频 率 |
![]() | 5 | 0.050 |
![]() | ① | 0.200 |
![]() | 35 | ② |
![]() | 30 | 0.300 |
![]() | 10 | 0.100 |
合 计 | 100 | 1.00 |

(1)频率分布表中的①、②位置应填什么数据?并在答题卡中补全频率分布直方图,
再根据频率分布直方图估计这507名画师中年龄在

(2)在抽出的100名画师中按年龄再采用分层抽样法抽取20人参加上海世博会深
圳馆志愿者活动,其中选取2名画师担任解说员工作,记这2名画师中“年龄低于30岁”的人数为


第26届世界大学生夏季运动会将于2011年8月12日到23日在中国广东举行,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者.将这30名志愿者的身高编成如图所示的茎叶图(单位:cm):

若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”,且只有“女高个子”才担任“礼仪小姐”.若从所有“高个子”中选3名志愿者,用
表示所选志愿者中能担任“礼仪小姐”的人数,则
的数学期望是________ .

若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”,且只有“女高个子”才担任“礼仪小姐”.若从所有“高个子”中选3名志愿者,用


某电视台为了宣传某沿江城市经济崛起的情况,特举办了一期有奖知识问答活动,活动对
岁的人群随机抽取
人回答问题“沿江城市带包括哪几个城市”,统计数据结果如下表:

(1)分别求出
、
、
的值;
(2)若以表中的频率近似看作各年龄组正确回答问题的概率,规定年龄在
内回答正确的得奖金
元,年龄在
内回答正确的得奖金
元.主持人随机请一家庭的两个成员(父亲
岁,孩子
岁)回答正确,求该家庭获得奖金
的分布列及数学期望(两人回答问题正确与否相互独立).


组数 | 分组 | 回答正确人数 | 占本组的频率 |
第![]() | ![]() | ![]() | ![]() |
第![]() | ![]() | ![]() | ![]() |
第![]() | ![]() | ![]() | ![]() |

(1)分别求出



(2)若以表中的频率近似看作各年龄组正确回答问题的概率,规定年龄在







班主任为了对本班学生的考试成绩进行分析,决定从全班25位女同学,15位男同学中随机抽取一个容量为8的样本进行分析.
(Ⅰ)如果按性别比例分层抽样,可以得到多少个不同的样本(只要求写出算式即可,不必计算出结果);
(Ⅱ)随机抽取8位同学,
数学分数依次为:60,65,70,75,80,85,90,95;
物理成绩依次为:72,77,80,84,88,90,93,95,
①若规定90分(含90分)以上为优秀,记ξ为这8位同学中数学和物理分数均为优秀的人数,求ξ的分布列和数学期望;
②若这8位同学的数学、物理分数事实上对应下表:
根据上表数据可知,变量y与x之间具有较强的线性相关关系,求出y与x的线性回归方程(系数精确到0.01).(参考公式:
,其中
,
;参考数据:
,
,
,
,
,
,
)
(Ⅰ)如果按性别比例分层抽样,可以得到多少个不同的样本(只要求写出算式即可,不必计算出结果);
(Ⅱ)随机抽取8位同学,
数学分数依次为:60,65,70,75,80,85,90,95;
物理成绩依次为:72,77,80,84,88,90,93,95,
①若规定90分(含90分)以上为优秀,记ξ为这8位同学中数学和物理分数均为优秀的人数,求ξ的分布列和数学期望;
②若这8位同学的数学、物理分数事实上对应下表:
学生编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
数学分数x | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 |
物理分数y | 72 | 77 | 80 | 84 | 88 | 90 | 93 | 95 |
根据上表数据可知,变量y与x之间具有较强的线性相关关系,求出y与x的线性回归方程(系数精确到0.01).(参考公式:









