- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 求离散型随机变量的均值
- 均值的性质
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某市为迎接“国家义务教育均衡发展”综合评估,市教育行政部门在全市范围内随机抽取了
所学校,并组织专家对两个必检指标进行考核评分.其中
分别表示“学校的基础设施建设”和“学校的师资力量”两项指标,根据评分将每项指标划分为
(优秀)、
(良好)、
(及格)三个等级,调查结果如表所示.例如:表中“学校的基础设施建设”指标为
等级的共有
所学校.已知两项指标均为
等级的概率为0.21.

(1)在该样本中,若“学校的基础设施建设”优秀率是0.4,请填写下面
列联表,并根据列联表判断是否有
的把握认为“学校的基础设施建设”和“学校的师资力量”有关;

(2)在该样本的“学校的师资力量”为
等级的学校中,若
,记随机变量
,求
的分布列和数学期望.
附表:










(1)在该样本中,若“学校的基础设施建设”优秀率是0.4,请填写下面



(2)在该样本的“学校的师资力量”为




附表:


现在的人基本每天都离不开手机,许多人手机一旦不在身边就不舒服,几乎达到手机二十四小时不离身,这类人群被称为“手机控”,这一群体在大学生中比较突出.为了调查大学生每天使用手机的时间,某调查公司针对某高校男生、女生各25名学生进行了调查,其中每天使用手机时间超过8小时的被称为:“手机控”,否则被称为“非手机控”.调查结果如下:
(1)将上面的列联表补充完整,再判断是否有99.5%的把握认为“手机控”与性别有关,说明你的理由;
(2)现从被调查的男生中按分层抽样的方法选出5人,再从这5人中随机选取3人参加座谈会,记这3人中“手机控”的人数为
,试求
的分布列与数学期望.
参考公式:
,其中
.
| 手机控 | 非手机控 | 合计 |
女生 | | 5 | |
男生 | 10 | | |
合计 | | | 50 |
(1)将上面的列联表补充完整,再判断是否有99.5%的把握认为“手机控”与性别有关,说明你的理由;
(2)现从被调查的男生中按分层抽样的方法选出5人,再从这5人中随机选取3人参加座谈会,记这3人中“手机控”的人数为


参考公式:


2017年5月,来自“一带一路”沿线的20国青年评选出了中国的“新四大发明”:高铁、扫码支付、共享单车和网购。为拓展市场,某调研组对甲、乙两个品牌的共享单车在5个城市的用户人数进行统计,得到如下数据:
(Ⅰ)如果共享单车用户人数超过5百万的城市称为“优质潜力城市”,否则“非优”,请据此判断是否有85%的把握认为“优质潜力城市”与共享单车品牌有关?
(Ⅱ)如果不考虑其它因素,为拓展市场,甲品牌要从这5个城市中选出3个城市进行大规模宣传.
①在城市Ⅰ被选中的条件下,求城市Ⅱ也被选中的概率;
②以
表示选中的城市中用户人数超过5百万的个数,求随机变量
的分布列及数学期望
.
下面临界值表供参考:
参考公式: K2=
,n=a+b+c+d
城市 品牌 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ |
甲品牌(百万) | 4 | 3 | 8 | 6 | 12 |
乙品牌(百万) | 5 | 7 | 9 | 4 | 3 |
(Ⅰ)如果共享单车用户人数超过5百万的城市称为“优质潜力城市”,否则“非优”,请据此判断是否有85%的把握认为“优质潜力城市”与共享单车品牌有关?
(Ⅱ)如果不考虑其它因素,为拓展市场,甲品牌要从这5个城市中选出3个城市进行大规模宣传.
①在城市Ⅰ被选中的条件下,求城市Ⅱ也被选中的概率;
②以



下面临界值表供参考:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式: K2=

随着科学技术的飞速发展,手机的功能逐渐强大,很大程度上代替了电脑、电视.为了了解某高校学生平均每天使用手机的时间是否与性别有关,某调查小组随机抽取了
名男生、
名女生进行为期一周的跟踪调查,调查结果如表所示:
(1)能否在犯错误的概率不超过
的前提下认为学生使用手机的时间长短与性别有关?
(2)在这
名女生中,调查小组发现共有
人使用国产手机,在这
人中,平均每天使用手机不超过
小时的共有
人.从平均每天使用手机超过
小时的女生中任意选取
人,求这
人中使用非国产手机的人数
的分布列和数学期望.
参考公式:



| 平均每天使用手机超过![]() | 平均每天使用手机不超过![]() | 合计 |
男生 | ![]() | ![]() | ![]() |
女生 | ![]() | ![]() | ![]() |
合计 | ![]() | ![]() | ![]() |
(1)能否在犯错误的概率不超过

(2)在这









![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
参考公式:


随着互联网技术的快速发展,人们更加关注如何高效地获取有价值的信息,网络知识付费近两年呈现出爆发式的增长,为了了解网民对网络知识付费的态度,某网站随机抽查了
岁及以上不足
岁的网民共
人,调查结果如下:

(1)请完成上面的
列联表,并判断在犯错误的概率不超过
的前提下,能否认为网民对网络知识付费的态度与年龄有关?
(2)在上述样本中用分层抽样的方法,从支持和反对网络知识付费的两组网民中抽取
名,若在上述
名网民中随机选
人,设这
人中反对态度的人数为随机变量
,求
的分布列和数学期望.
附:
,
.




(1)请完成上面的


(2)在上述样本中用分层抽样的方法,从支持和反对网络知识付费的两组网民中抽取






附:


![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示),规定80分及以上者晋级成功,否则晋级失败(满分为100分).
(1)求图中
的值;
(2)根据已知条件完成下面
列联表,并判断能否有85%的把握认为“晋级成功”与性别有关?


(参考公式:
,其中
)

(3)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为
,求
的分布列与数学期望
.
(1)求图中

(2)根据已知条件完成下面



(参考公式:



(3)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为



随着电子产品的不断更新完善,更多的电子产品逐步走入大家的世界,给大家带来了丰富多彩的生活,但也带来了一些负面的影响,某公司随即抽取
人对某电子产品是否对日常生活有益进行了问卷调查,并对参与调查的
人中的年龄层次以及意见进行了分类,得到的数据如下表所示:
(1)根据表中的数据,能否在犯错误的概率不超过
的前提下,认为电子产品的态度与年龄有关系?
(2)为了答谢参与问卷调查的人员,该公司对参与本次问卷调查的人员进行抽奖活动,奖金额以及发放的概率如下:
现在甲、乙两人参与了抽奖活动,记两人获得的奖金总金额为
,求
的分布列和数学期望.
参与公式:
临界值表:


| ![]() | ![]() ![]() | 总计 |
认为某电子产品对生活有益 | ![]() | ![]() | ![]() |
认为某电子产品对生活无益 | ![]() | ![]() | ![]() |
总计 | ![]() | ![]() | ![]() |
(1)根据表中的数据,能否在犯错误的概率不超过

(2)为了答谢参与问卷调查的人员,该公司对参与本次问卷调查的人员进行抽奖活动,奖金额以及发放的概率如下:
奖金额 | ![]() | ![]() | ![]() |
概率 | ![]() | ![]() | ![]() |
现在甲、乙两人参与了抽奖活动,记两人获得的奖金总金额为


参与公式:

临界值表:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
“微信运动”已成为当下热门的健身方式,小王的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的
人(男、女各
人),记录了他们某一天的走路步数,并将数据整理如下:
(1)已知某人一天的走路步数超过
步被系统评定“积极型”,否则为“懈怠型”,根据题意完成下面的
列联表,并据此判断能否有
以上的把握认为“评定类型”与“性别”有关?
附:
,
(2)若小王以这
位好友该日走路步数的频率分布来估计其所有微信好友每日走路步数的概率分布,现从小王的所有微信好友中任选
人,其中每日走路不超过
步的有
人,超过
步的有
人,设
,求
的分布列及数学期望.


步量 性别 | 0~2000 | 2001~5000 | 5001~8000 | 8001~10000 | >10000 |
男 | 1 | 2 | 3 | 6 | 8 |
女 | 0 | 2 | 10 | 6 | 2 |
(1)已知某人一天的走路步数超过



| 积极型 | 懈怠型 | 总计 |
男 | | | |
女 | | | |
总计 | | | |
附:

![]() | 0.10 | 0.05 | 0.025 | 0.010 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 |
(2)若小王以这








《中华人民共和国民法总则》(以下简称《民法总则》)自2017年10月1日起施行。作为民法典的开篇之作,《民法总则》与每个人的一生息息相关.某地区为了调研本地区人们对该法律的了解情况,随机抽取50人,他们的年龄都在区间[25,85]上,年龄的频率分布及了解《民法总则》的人数如下表:
(Ⅰ)填写下面2×2 列联表,并判断是否有99%的把握认为以45岁为分界点对了解《民法总则》政策有差异;

(Ⅱ)若对年龄在[45,55),[65,75)的被调研人中各随机选取2人进行深入调研,记选中的4人中不了解《民法总则》的人数为X,求随机变量X的分布列和数学期望.
年龄 | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) | [75,85) |
频数 | 5 | 5 | 10 | 15 | 5 | 10 |
了解《民法总则》 | 1 | 2 | 8 | 12 | 4 | 5 |
(Ⅰ)填写下面2×2 列联表,并判断是否有99%的把握认为以45岁为分界点对了解《民法总则》政策有差异;

(Ⅱ)若对年龄在[45,55),[65,75)的被调研人中各随机选取2人进行深入调研,记选中的4人中不了解《民法总则》的人数为X,求随机变量X的分布列和数学期望.

随着网络的飞速发展,人们的生活发生了很大变化,其中无现金支付是一个显著特征,某评估机构对无现金支付的人群进行网络问卷调查,并从参与调查的数万名受访者中随机选取了300人,把这300人分为三类,即使用支付宝用户、使用微信用户、使用银行卡用户,各类用户的人数如图所示,同时把这300人按年龄分为青年人组与中年人组,制成如图所示的列联表:

(1) 完成列联表,并判断是否有99%的把握认为使用支付宝用户与年龄有关系?
(2)把频率作为概率,从所有无现金支付用户中(人数很多)随机抽取3人,用
表示所选3人中使用支付宝用户的人数,求
的分布列与数学期望.
附:
,其中
.
| 支付宝用户 | 非支付宝用户 | 合计 |
中老年 | | 90 | |
青年 | 120 | | |
合计 | | | 300 |

(1) 完成列联表,并判断是否有99%的把握认为使用支付宝用户与年龄有关系?
(2)把频率作为概率,从所有无现金支付用户中(人数很多)随机抽取3人,用


附:
![]() | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |

