- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 求离散型随机变量的均值
- 均值的性质
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
手机
中的“
运动”具有这样的功能,不仅可以看自己每天的运动步数,还可以看到朋友圈里好友的步数.小明的
朋友圈里有大量好友参与了“
运动”,他随机选取了其中30名,其中男女各15名,记录了他们某一天的走路步数,统计数据如下表所示:
(Ⅰ)以样本估计总体,视样本频率为概率,在小明
朋友圈里的男性好友中任意选取3名,其中走路步数低于7500步的有
名,求
的分布列和数学期望;
(Ⅱ)如果某人一天的走路步数超过7500步,此人将被“
运动”评定为“积极型”,否则为“消极型”.根据题意完成下面的
列联表,并据此判断能否有
以上的把握认为“评定类型”与“性别”有关?
附:
.




![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
男 | 0 | 2 | 4 | 7 | 2 |
女 | 1 | 3 | 7 | 3 | 1 |
(Ⅰ)以样本估计总体,视样本频率为概率,在小明



(Ⅱ)如果某人一天的走路步数超过7500步,此人将被“



| 积极型 | 消极型 | 总计 |
男 | | | |
女 | | | |
总计 | | | |
附:

![]() | 0.10 | 0.05 | 0.025 | 0.01 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 |
给出下列四个结论:
(1)相关系数
的取值范围是
;
(2)用相关系数
来刻画回归效果,
的值越大,说明模型的拟合效果越差;
(3)一个袋子里装有大小相同的5个白球和5个黑球,从中任取4个,则其中所含白球个数的期望是2;
(4) 一个篮球运动员投篮一次得3分的概率为
,得2分的概率为
,不得分的概率为
,且
,已知他投篮一次得分的数学期望为2,则
的最小值为
.
其中正确结论的序号为______________.
(1)相关系数


(2)用相关系数


(3)一个袋子里装有大小相同的5个白球和5个黑球,从中任取4个,则其中所含白球个数的期望是2;
(4) 一个篮球运动员投篮一次得3分的概率为






其中正确结论的序号为______________.
小明和他的一些同学住在同一小区,他们上学、放学坐公交在路上所用的时间
(分钟)只与路况畅通情况有关(上学、放学时的路况是一样的),小明在一年当中随机地记录了
次上学(或放学)在路上所用的时间,其频数统计如下表
(1)求他上学(或放学)在路上所用时间的数学期望
;
(2)小明和他的另外两名同学
月
日彼此独立地从小区到学校去,设他们
人中所用时间不超过
的人数为
,求
的分布列及数学期望;
(3)小明在某天上学和放学总共所花的时间不超过
分钟的概率是多少?


![]() | ![]() | ![]() | ![]() | ![]() |
频数(次) | ![]() | ![]() | ![]() | ![]() |
(1)求他上学(或放学)在路上所用时间的数学期望

(2)小明和他的另外两名同学






(3)小明在某天上学和放学总共所花的时间不超过

心理学家发现视觉和空间能力与性别有关,某高中数学兴趣小组为了验证这个结论,从兴趣小组中抽取50名同学(男30女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)
(1)能否据此判断有
的把握认为视觉和空间能力与性别有关?
(2)以上列联表中女生选做几何题的频率作为概率,从该校1500名女生中随机选6名女生,记6名女生选做几何题的人数为
,求
的数学期望
和方差
.
附表:
参考公式:
,其中
.
| | 几何题 | 代数题 | 合计 |
男同学 | | 22 | 8 | 30 |
女同学 | | 8 | 12 | 20 |
合计 | | 30 | 20 | 50 |
(1)能否据此判断有

(2)以上列联表中女生选做几何题的频率作为概率,从该校1500名女生中随机选6名女生,记6名女生选做几何题的人数为




附表:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:


2018年2月9-25日,第23届冬奥会在韩国平昌举行.4年后,第24届冬奥会将在中国北京和张家口举行.为了宣传冬奥会,某大学在平昌冬奥会开幕后的第二天,从全校学生中随机抽取了120名学生,对是否收看平昌冬奥会开幕式情况进行了问卷调查,统计数据如下:
(Ⅰ)根据上表说明,能否有
的把握认为,收看开幕式与性别有关?
(Ⅱ)现从参与问卷调查且收看了开幕式的学生中,采用按性别分层抽样的方法,选取12人参加2022年北京冬奥会志愿者宣传活动.
(ⅰ)问男、女学生各选取了多少人?
(ⅱ)若从这12人中随机选取3人到校广播站开展冬奥会及冰雪项目的宣传介绍,设选取的3人中女生人数为
,写出
的分布列,并求
.
附:
,其中
.
(Ⅰ)根据上表说明,能否有

(Ⅱ)现从参与问卷调查且收看了开幕式的学生中,采用按性别分层抽样的方法,选取12人参加2022年北京冬奥会志愿者宣传活动.
(ⅰ)问男、女学生各选取了多少人?
(ⅱ)若从这12人中随机选取3人到校广播站开展冬奥会及冰雪项目的宣传介绍,设选取的3人中女生人数为



| 收看 | 没收看 |
男生 | 60 | 20 |
女生 | 20 | 20 |
附:


![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
某工厂有两台不同机器A和B生产同一种产品各10万件,现从各自生产的产品中分别随机抽取二十件,进行品质鉴定,鉴定成绩的茎叶图如下所示:

该产品的质量评价标准规定:鉴定成绩达到
的产品,质量等级为优秀;鉴定成绩达到
的产品,质量等级为良好;鉴定成绩达到
的产品,质量等级为合格.将这组数据的频率视为整批产品的概率.
(1)从等级为优秀的样本中随机抽取两件,记
为来自B机器生产的产品数量,写出
的分布列,并求
的数学期望;
(2)完成下列
列联表,以产品等级是否达到良好以上(含良好)为判断依据,判断能不能在误差不超过0.05的情况下,认为B机器生产的产品比A机器生产的产品好;
(3)已知优秀等级产品的利润为12元/件,良好等级产品的利润为10元/件,合格等级产品的利润为5元/件,A机器每生产10万件的成本为20万元,B机器每生产10万件的成本为30万元;该工厂决定:按样本数据测算,两种机器分别生产10万件产品,若收益之差达到5万元以上,则淘汰收益低的机器,若收益之差不超过5万元,则仍然保留原来的两台机器.你认为该工厂会仍然保留原来的两台机器吗?

该产品的质量评价标准规定:鉴定成绩达到



(1)从等级为优秀的样本中随机抽取两件,记



(2)完成下列

| A生产的产品 | B生产的产品 | 合计 |
良好以上(含良好) | | | |
合格 | | | |
合计 | | | |
(3)已知优秀等级产品的利润为12元/件,良好等级产品的利润为10元/件,合格等级产品的利润为5元/件,A机器每生产10万件的成本为20万元,B机器每生产10万件的成本为30万元;该工厂决定:按样本数据测算,两种机器分别生产10万件产品,若收益之差达到5万元以上,则淘汰收益低的机器,若收益之差不超过5万元,则仍然保留原来的两台机器.你认为该工厂会仍然保留原来的两台机器吗?

华中师大附中中科教处为了研究高一学生对物理和数学的学习是否与性别有关,从高一年级抽取
名同学(男同学
名,女同学
名),给所有同学物理题和数学题各一题,让每位同学自由选择一题进行解答。选题情况如下表:(单位:人)
(1)在犯错误的概率不超过
的条件下,能否判断高一学生对物理和数学的学习与性别有关?
(2)经过多次测试后发现,甲每次解答一道物理题所用的时间为
分钟,乙每次解答一道物理题所用的时间为
分钟,现甲、乙解同一道物理题,求甲比乙先解答完的概率;
(3)现从选择做物理题的
名女生中任意选取两人,对她们的解答情况进行全程研究,记甲、乙两女生被抽到的人数为
,求
的分布列和数学期望.
附表及公式




| 物理题 | 数学题 | 总计 |
男同学 | ![]() | ![]() | ![]() |
女同学 | ![]() | ![]() | ![]() |
总计 | ![]() | ![]() | ![]() |
(1)在犯错误的概率不超过

(2)经过多次测试后发现,甲每次解答一道物理题所用的时间为


(3)现从选择做物理题的



附表及公式
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |

为及时了解男生和女生分别对高考数学试题接受程度,四川省招生考试办公室随机测试了
位成都七中高三学生,得到情况如下表:
(1)判断是否有
以上的把握认为“分数与性别有关”,并说明理由;
(2)现把以上频率当作概率,若从成都七中全校学生中随机独立抽取三位男生测试,求这三人中至少有一人测评分数在
以上的概率.
(3)已知
位测试分数在
以上得女生来自高三
班或
班,其中有2人来自12班,省招生考试办公室打算从这
位试分数在
以上得女生随机邀请两位来参加座谈,设邀请的
人中来自
班的人数为
,求
的分布列及数学期望
.
附:

(1)判断是否有

(2)现把以上频率当作概率,若从成都七中全校学生中随机独立抽取三位男生测试,求这三人中至少有一人测评分数在

(3)已知











| 男生 | 女生 | 总计 |
测试分数在![]() | ![]() | ![]() | ![]() |
测试分数不超过![]() | ![]() | ![]() | ![]() |
总计 | ![]() | ![]() | ![]() |
附:

![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
为了巩固全国文明城市创建成果,今年吉安市开展了拆除违章搭建铁皮棚专项整治行为.为了了解市民对此项工作的“支持”与“反对”态度,随机从存在违章搭建的户主中抽取了男性、女性共
名进行调查,调查结果如下:
(1)根据以上数据,判断是否有
的把握认为对此项工作的“支持”与“反对”态度与“性别”有关;
(2)现从参与调查的女户主中按此项工作的“支持”与“反对”态度用分层抽样的方法抽取
人,从抽取的
人中再随机地抽取
人赠送小礼品,记这
人中持“支持”态度的有
人,求
的分布列与数学期望.
参考公式:
,其中
.
参考数据:

| 支持 | 反对 | 合计 |
男性 | ![]() | ![]() | ![]() |
女性 | ![]() | ![]() | ![]() |
合计 | ![]() | ![]() | ![]() |
(1)根据以上数据,判断是否有

(2)现从参与调查的女户主中按此项工作的“支持”与“反对”态度用分层抽样的方法抽取






参考公式:


参考数据:
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
为了响应党的十九大所提出的教育教学改革,某校启动了数学教学方法的探索,学校将髙一年级部分生源情况基本相同的学生分成甲、乙两个班,每班40人,甲班按原有传统模式教学,乙班实施自主学习模式.经过一年的教学实验,将甲、乙两个班学生一年来的数学成绩取平均数,两个班学生的平均成绩均在[50,100],按照区间[50,60),[60,70),[70,80),[80,90),[90,100]进行分组,绘制成如下频率分布直方图,规定不低于80分(百分制)为优秀,



,
(I)完成表格,并判断是否有90%以上的把握认为“数学成绩优秀与教学改革有关”

〔Ⅱ)从乙班[70,80),[80,90),[90,100]分数段中,按分层抽样随机抽取7名学生座谈,
从中选三位同学发言,记来自[80,90)发言的人数为随机变量x,求x的分布列和期望.




(I)完成表格,并判断是否有90%以上的把握认为“数学成绩优秀与教学改革有关”

〔Ⅱ)从乙班[70,80),[80,90),[90,100]分数段中,按分层抽样随机抽取7名学生座谈,
从中选三位同学发言,记来自[80,90)发言的人数为随机变量x,求x的分布列和期望.