某中学将100名高一新生分成水平相同的甲,乙两个“平行班”,每班50人.陈老师采用A,B两种不同的教学方式分别在甲,乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师对甲,乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如下图),计成绩不低于90分者为“成绩优秀”.

从乙班随机抽取2名学生的成绩,记“成绩优秀”的个数为,求的分布列和数学期望.
根据频率分布直方图填写下面2x2列联表,并判断是否有的把握认为“成绩优秀”与教学方式有关.
 
甲班(A方式)
乙班(B方式)
总计
成绩优秀
 
 
 
成绩不优秀
 
 
 
总计
 
 
 
 
附:
P(
0.25
0.15
0.10
0.05
0.025
k
1.323
2.072
2.706
3.841
5.024
 
当前题号:1 | 题型:解答题 | 难度:0.99

“开门大吉”是某电视台推出的游戏节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示.
(1)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称与否和年龄有关;说明你的理由;(下面的临界值表供参考)

0.10
0.05
0.010
0.005

2.706
3.841
6.635
7.879
 
现计划在这次场外调查中按年龄段选取9名选手,并抽取3名幸运选手,求3名幸运选手中在20~30岁之间的人数的分布列和数学期望.

(参考公式:其中
当前题号:2 | 题型:解答题 | 难度:0.99
在一次高三数学模拟测验中,对本班“选考题”选答情况进行统计结果如下:

(Ⅰ)在统计结果中,如果把“选修4-1”和“选修4-4”称为“几何类”,把“选修4-5”称为“非几何类”,能否有99%的把握认为学生选答“几何类”与性别有关?
(Ⅱ)已知本班的两名数学课代表都选答的是“选修4-5”,现从选答“选修4-1”、“选修4-4”和“选修4-5”的同学中,按分层抽样的方法随机抽取7人,记抽取到数学课代表的人数为,求得分布列及数学期望.
附:
当前题号:3 | 题型:解答题 | 难度:0.99
某校高三数学备课组为了更好的制定二轮复习的计划,开展了试卷讲评后效果的调研,从上学期期末数学试题中选出一些学生易错题,重新进行测试,并认为做这些题不出任何错误的同学为“过关”,出了错误的同学认为“不过关”,现随机抽查了年级50人,他们的测试成绩的频数分布如下表:

(I)由以上统计数据完成如下2×2列联表,并判断是否有95%的把握认为期末数学成绩不低于90分与测试“过关”是否有关?说明你的理由.

(II)在期末分数段[105,120)的5人中,从中随机选3人,记抽取到过关测试“过关”的人数为X,求X的分布列及数学期望.下面的临界值表供参考:
当前题号:4 | 题型:解答题 | 难度:0.99
为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机调查了人,他们年龄大点频数分布及支持“生育二胎”人数如下表:
年龄
[5,15)
[15,25)
[25,35)
[35,45)
[45,55)
[55,65)
频数
5
10
15
10
5
5
支持“生育二胎”
4
5
12
8
2
1
 
(1)由以上统计数据填下面2乘2列联表,并问是否有的把握认为以岁为分界点对“生育二胎放开”政策的支持度有差异:
 
年龄不低于45岁的人数
年龄低于45岁的人数
合计
支持
a=
c=
 
不支持
b=
d=
 
合计
 
 
 
 
(2)若对年龄在的的被调查人中各随机选取两人进行调查,记选中的人不支持“生育二胎”人数为,求随机变量的分布列及数学期望.
参考数据:

0.050
0.010
0.001
k
3.841
6.635
10.828
 
当前题号:5 | 题型:解答题 | 难度:0.99
2015年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,造成165.17万人受灾, 5.6万人紧急转移安置,288间房屋倒塌,46.5千公顷农田受灾,直接经济损失12.99亿元,距离陆丰市222千米的梅州也受到了台风的影响,适逢暑假,小明调查了梅州某小区的50户居民由于台风造成的经济损失,将收集的数据分成五组,并作出如下频率分布直方图(图1):

(1)试根据频率分布直方图估计小区平均每户居民的平均损失;
(同一组中的数据用该组区间的中点值作代表);
(2)小明向班级同学发出倡议,为该小区居民捐款,现从损失超过6000元的居民中随机
抽出2户进行捐款援助,求抽出的2户居民损失均超过8000元的概率;
(3)台风后区委会号召该小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如下表,
在图2表格空白外填写正确数字,并说明是否有95%以上的把握认为捐款数额超过或
不超过500元和自身经济损失是否超过4000元有关?
 
经济损失不超过4000元
经济损失超过4000元
合计
捐款超过500元
30
 
 
捐款不超过500元
 
6
 
合计
 
 
 
 
附:临界值参考公式:.

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
当前题号:6 | 题型:解答题 | 难度:0.99
年,我国诸多省市将使用新课标全国卷作为高考用卷.(以下简称校)为了调查该校师生对这一举措的看法,随机抽取了名教师,名学生进行调查,得到以下的列联表:
 
支持
反对
合计
教师



学生



合计



 
(1)根据以上数据,能否有的把握认为校师生“支持使用新课标全国卷”与“师生身份”有关?
(2)现将这名师生按教师、学生身份进行分层抽样,从中抽取人,试求恰好抽取到持“反对使用新课标全国卷”态度的教师人的概率;
(3)将上述调查所得到的频率视为概率,从校所有师生中,采用随机抽样的方法抽取位师生进行深入调查,记被抽取的位师生中持“支持新课标全国卷”态度的人数为.
①求的分布列;
②求的数学期望和方差.
参考公式:,其中.
参考数据:












 
当前题号:7 | 题型:解答题 | 难度:0.99
4月23日是世界读书日,为提高学生对读书的重视,让更多的人畅游于书海中,从而收获更多的知识,某高中的校学生会开展了主题为“让阅读成为习惯,让思考伴随人生”的实践活动,校学生会实践部的同学随即抽查了学校的40名高一学生,通过调查它们是喜爱读纸质书还是喜爱读电子书,来了解在校高一学生的读书习惯,得到如表列联表:
 
喜欢读纸质书
不喜欢读纸质书
合计

16
4
20

8
12
20
合计
24
16
40
 
(Ⅰ)根据如表,能否有99%的把握认为是否喜欢读纸质书籍与性别有关系?
(Ⅱ)从被抽查的16名不喜欢读纸质书籍的学生中随机抽取2名学生,求抽到男生人数ξ的分布列及其数学期望E(ξ).
参考公式:K2=,其中n=a+b+c+d.
下列的临界值表供参考:
P(K2≥k)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k
2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
当前题号:8 | 题型:解答题 | 难度:0.99
某课题组对全班45名同学的饮食习惯进行了一次调查,并用茎叶图表示45名同学的饮食指数,说明:下图中饮食指数低于70的人被认为喜食蔬菜,饮食指数不低于70的人被认为喜食肉类.

(1)根据茎叶图,完成下面列联表,并判断是否有90%的把握认为喜食蔬菜还是喜食肉类与性别有关,说明理由;

(2)根据饮食指数在进行分层抽样,从全班同学中抽取15名同学进一步调查,记抽取的喜食肉类的女同学为,求的分布列和数学期望.

下面公式及临界值表仅供参考:
当前题号:9 | 题型:解答题 | 难度:0.99
为了解游客对2015年“十一”小长假的旅游情况是否满意,某旅行社从年龄(单位: 岁)在内的游客中随机抽取了人,并且作出了各个年龄段的频率分布直方图如图所示,同时对这人的旅游结果满意情况进行统计得到下表:

(1)求统计表中的值;
(2)从年龄在内且对旅游结果满意的游客中,采用分层抽样的方法抽取人,再从抽取的人中随机抽取人做进一步调查,记人中年龄在内的人数为,求的分布列和数学期望.
当前题号:10 | 题型:解答题 | 难度:0.99