- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 求离散型随机变量的均值
- 均值的性质
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某大学毕业生响应国家号召,到某村参加村委会主任应聘考核.考核依次分为笔试、面试.试用共三轮进行,规定只有通过前一轮考核才能进入下一轮考核,否则将被淘汰,三轮考核都通过才能被正式录用.设该大学毕业生通过三轮考核的概率分别为
,且各轮考核通过与否相互独立.
(Ⅰ)求该大学毕业生未进入第三轮考核的概率;
(Ⅱ)设该大学毕业生在应聘考核中考核次数为
,求
的数学期望和方差.

(Ⅰ)求该大学毕业生未进入第三轮考核的概率;
(Ⅱ)设该大学毕业生在应聘考核中考核次数为


高三第一学期期末四校联考数学第I卷中共有8道选择题,每道选择题有4个选项,其中只有一个是正确的;评分标准规定:“每题只选一项,答对得5分,不答或答错得0分.”某考生每道题都给出一个答案,已确定有5道题的答案是正确的,而其余选择题中,有1道题可判断出两个选项是错误的,有一道可以判断出一个选项是错误的,还有一道因不了解题意只能乱猜,试求出该考生:
(1)得40分的概率
(2)得多少分的可能性最大?
(3)所得分数
的数学期望
(1)得40分的概率
(2)得多少分的可能性最大?
(3)所得分数

为了预防春季流感,市防疫部门提供了编号为1,2,3,4的四种疫苗供市民选择注射,每个人均能从中任选一个编号的疫苗接种,现有甲,乙,丙三人接种疫苗.
(I )求三人注射的疫苗编号互不相同的概率;
(II)设三人中选择的疫苗编号最大数为
,求
的分布列及数学期望.
(I )求三人注射的疫苗编号互不相同的概率;
(II)设三人中选择的疫苗编号最大数为


一项试验有两套方案,每套方案试验成功的概率都是
,试验不成功的概率都是
甲随机地从两套方案中选取一套进行这项试验,共试验了3次,每次实验相互独立,且要从两套方案中等可能地选择一套.
(1)求3次试验都选择了同一套方案且都试验成功的概率;
(2)记3次试验中,都选择了第一套方案并试难成功的次数为
,求
的分布列和期望
.


(1)求3次试验都选择了同一套方案且都试验成功的概率;
(2)记3次试验中,都选择了第一套方案并试难成功的次数为



假设一种机器在一个工作日内发生故障的概率为
,若一周5个工作日内无故障,则可获得利润10万元;仅有一个工作日发生故障可获得利润5万元; 仅有两个工作日发生故障不获利也不亏损;有三个或三个以上工作日发生故障就要亏损2万元.求:
(1)一周5个工作日内恰有两个工作日发生故障的概率(保留两位有效数字);
(2)一周5个工作日内利润的期望.

(1)一周5个工作日内恰有两个工作日发生故障的概率(保留两位有效数字);
(2)一周5个工作日内利润的期望.
桌面上有三颗均匀的骰子(6个面上分别标有数字1,2,3,4,5,6),重复下面的操作,直到桌面上没有骰子:将骰子全部抛掷,然后去掉那些朝上点数为奇数的骰子;记操作三次之内(含三次)去掉的骰子的颗数为X.
(Ⅰ)求
;
(Ⅱ)求X的分布列及期望
.
(Ⅰ)求

(Ⅱ)求X的分布列及期望

甲、乙、丙三人进行象棋比赛,每两人比赛一场,共赛三场.每场比赛胜者得3
分,负者得0分,没有平局,在每一场比赛中,甲胜乙的概率为
,甲胜丙的概率为
,乙胜丙的概率为
(1)求甲获第一名且丙获第二名的概率:
(2)设在该次比赛中,甲得分为ξ,求ξ的分布列和数学期望。
分,负者得0分,没有平局,在每一场比赛中,甲胜乙的概率为



(1)求甲获第一名且丙获第二名的概率:
(2)设在该次比赛中,甲得分为ξ,求ξ的分布列和数学期望。
甲、乙两名射手各进行一次射击,射中环数
、
的分布列分别为:
(I)确定
、
的值,并求两人各进行一次射击,都射中
环的概率;
(II)两各射手各射击一次为一轮射击,如果在某一轮射击中两人都射中
环,则射击结束,否则继续射击,但最多不超过
轮,求结束时射击轮次数
的分布列及期望,并求结束时射击轮次超过
次的概率.


![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
(I)确定



(II)两各射手各射击一次为一轮射击,如果在某一轮射击中两人都射中




某军事院校招生要经过考试和体检两个过程,在考试通过后才有体检的机会,两项都合格则被录取.若甲、乙、丙三名考生能通过考试的概率分别为0.4,0.5,0.8,体检合格的概率分别为0.5,0.4,0.25,每名考生是否被录取相互之间没有影响.
(1)求恰有一人通过考试的概率;
(2)设被录取的人数为
求
的分布列和数学期望.
(1)求恰有一人通过考试的概率;
(2)设被录取的人数为


某班拟从两名同学中选一人参加学校知识竞赛,现设计一个预选方案:选手从五道题中一次性随机抽取三道进行回答,已知甲五道题中只会三道,乙每道题答对的概率都是3/5,且每道题答对与否互不影响.
(1) 分别求出甲乙两人答对题数的概率分布;
(2) 你认为派谁参加比赛更合适.
(1) 分别求出甲乙两人答对题数的概率分布;
(2) 你认为派谁参加比赛更合适.