- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 求离散型随机变量的均值
- 均值的性质
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某次月考数学第Ⅰ卷共有8道选择题,每道选择题有4个选项,其中只有一个是正确的;评分标准为:“每题只有一个选项是正确的,选对得5分,不选或选错得0分.”某考生每道题都给出一个答案,已确定有5道题的答案是正确的,而其余3道题中,有一道题可判断出两个选项是错误的,有一道题可以判断出一个选项是错误的,还有一道题因不了解题意而乱猜,试求该考生:
(Ⅰ)得40分的概率;
(Ⅱ)得多少分的可能性最大?
(Ⅲ)所得分数X的数学期望.
(Ⅰ)得40分的概率;
(Ⅱ)得多少分的可能性最大?
(Ⅲ)所得分数X的数学期望.
现有三枚外观一致的硬币,其中两枚是均匀硬币另一枚是不均匀的硬币,这枚不均匀的硬币抛出后正面出现的概率为
.现投掷这三枚硬币各1次,设
为得到的正面个数,则随机变量
的数学期望
________.




有甲、乙两个箱子,甲箱中有
张卡片,其中
张写有数字
,
张写有数字
,
张写有数字
;乙箱中也有
张卡片,其中
张写有数字
,
张写有数字
,
张写有数字
.
(1)如果从甲、乙箱中各取一张卡片,设取出的
张卡片上数字之积为
,求
的分布列及
的数学期望;
(2)如果从甲箱中取一张卡片,从乙箱中取两张卡片,那么取出的
张卡片都写有
数字
的概率是多少?














(1)如果从甲、乙箱中各取一张卡片,设取出的




(2)如果从甲箱中取一张卡片,从乙箱中取两张卡片,那么取出的

数字

两名狙击手在一次射击比赛中,狙击手甲得1分、2分、3分的概率分别为0.4,0.1,0.5;狙击手乙得1分、2分、3分的概率分别为0.1,0.6,0.3,那么两名狙击手获胜希望大的是 .
甲,乙,丙三名射击运动员进行设计比赛,已知他们击中目标的概率分别为0.7,0.8,0.5,现他们三人分别向目标个射击依次,记目标被击中的次数为X.
(1)求随机变量X的概率分布;
(2)求随机变量X的数学期望.
(1)求随机变量X的概率分布;
(2)求随机变量X的数学期望.
一次单元测验由20个选择题构成,每个选择题有4个选项,其中有且仅有一个选项是正确答案,每题选择正确答案得5分,不作出选择或选错不得分,满分100分.学生甲选对任一题的概率为0.9,学生乙则在测验中对每题都从4个选择中随机地选择一个,求学生甲和乙在这次英语单元测验中的成绩的期望
在一次运动会上,某单位派出了有6名主力队员和5名替补队员组成的代表队参加比赛.如果随机抽派5名队员上场比赛,将主力队员参加比赛的人数记为X,求随机变量X的概率分布以及随机变量X数学期望;(本题结果用分数表示即可)
在一个盒子中,放有标号分别为1,2,3的三张卡片,先从这个盒子中有放回地先后抽取两张卡片,设这两张卡片的号码分别为
为坐标原点,
,记
.
(1)求随机变量
的最大值,并求事件“
取最大值”的概率;
(2)求
的分布列及数学期望.



(1)求随机变量


(2)求

甲乙两人进行射击训练,每人射击两次,若甲乙两人一次射击命中目标的概率分别为
和
,且每次射击是否命中相互之间没有影响.
(I)求两人恰好各命中一次的概率;
(II)求两人击中目标的总次数
的分布列和期望.


(I)求两人恰好各命中一次的概率;
(II)求两人击中目标的总次数
