(本小题满分12分)
“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称.某市为了了解人们对“一带一路”的认知程度,对不同年龄和不同职业的人举办了一次“一带一路”知识竞赛,满分100分(90分及以上为认知程度高).现从参赛者中抽取了人,按年龄分成5组,第一组:,第二组:,第三组:,第四组:,第五组:,得到如图所示的频率分布直方图,已知第一组有6人.

(1)求
(2)求抽取的人的年龄的中位数(结果保留整数);
(3)从该市大学生、军人、医务人员、工人、个体户 五种人中用分层抽样的方法依次抽取6人,42人,36人,24人,12人,分别记为1~5组,从这5个按年龄分的组和5个按职业分的组中每组各选派1人参加知识竞赛,分别代表相应组的成绩,年龄组中1~5组的成绩分别为93,96,97,94,90,职业组中1~5组的成绩分别为93,98,94,95,90.
(Ⅰ)分别求5个年龄组和5个职业组成绩的平均数和方差;
(Ⅱ)以上述数据为依据,评价5个年龄组和5个职业组对“一带一路”的认知程度.
当前题号:1 | 题型:解答题 | 难度:0.99
(本小题满分12分)贵广高速铁路自贵阳北站起,经黔南州、黔东南、广西桂林、贺州、广东肇庆、佛山终至广州南站. 其中广东省内有怀集站、广宁站、肇庆东站、三水南站、佛山西站、广州南站共6个站. 记者对广东省内的6个车站随机抽取3个进行车站服务满意度调查.
(1)求抽取的车站中含有佛山市内车站(包括三水南站和佛山西站)的概率;
(2)设抽取的车站中含有肇庆市内车站(包括怀集站、广宁站、肇庆东站)个数为X,求X的分布列及其均值(即数学期望).
当前题号:2 | 题型:解答题 | 难度:0.99
为促进义务教育的均衡发展,各地实行免试就近入学政策,某地区随机调查了人,他们年龄的频数分布及赞同“就近入学”人数如表:
年龄






频数






赞同






 
(Ⅰ)在该样本中随机抽取人,求至少人支持“就近入学”的概率;
(Ⅱ)若对年龄在的被调查人中各随机选取两人进行调查,记选中的人支持“就近入学”人数为,求随机变量的分布列及数学期望。
当前题号:3 | 题型:解答题 | 难度:0.99
某同学需通过选拔考试进入学校的“体育队”和“文艺队”,进入这两个队成功与否是相互独立的,能同时进入这两个队的概率是,至少能进入一个队的概率是,并且能进入“体育队”的概率小于能进入“文艺队”的概率.
(Ⅰ)求该同学通过选拔进入“体育队”的概率和进入“文艺队”的概率
(Ⅱ)学校对于进入“体育队”的同学增加2个选修课学分,对于进入“文艺队”的同学增加1个选修课学分,求该同学获得选修课加分分数的分布列与数学期望.
当前题号:4 | 题型:解答题 | 难度:0.99
近年来,网络电商已经悄然进入了广大市民的日常生活,并慢慢改变了人们的消费方式为了更好地服务民众,某电商在其官方APP中设置了用户评价反馈系统,以了解用户对商品状况和优惠活动的评价现从评价系统中随机抽出200条较为详细的评价信息进行统计,商品状况和优惠活动评价的2×2列联表如下:
 
对优惠活动好评
对优惠活动不满意
合计
对商品状况好评
100
20
120
对商品状况不满意
50
30
80
合计
150
50
200
 
(I)能否在犯错误的概率不超过0.001的前提下认为优惠活动好评与商品状况好评之间有关系?
(Ⅱ)为了回馈用户,公司通过APP向用户随机派送每张面额为0元,1元,2元的三种优惠券用户每次使用APP购物后,都可获得一张优惠券,且购物一次获得1元优惠券,2元优惠券的概率分别是,各次获取优惠券的结果相互独立若某用户一天使用了APP购物两次,记该用户当天获得的优惠券面额之和为X,求随机变量X的分布列和数学期望.
参考数据
PK2k
0.150
0.100
0.050
0.025
0.010
0.005
0.001
k
2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
参考公式:K2,其中na+b+c+d
当前题号:5 | 题型:解答题 | 难度:0.99
羽毛球比赛中采用每球得分制,即每回合中胜方得1分,负方得0分,每回合由上回合的胜方发球.设在甲、乙的比赛中,每回合发球,发球方得1分的概率为0.6,各回合发球的胜负结果相互独立.若在一局比赛中,甲先发球.
(1)求比赛进行3个回合后,甲与乙的比分为的概率;
(2)表示3个回合后乙的得分,求的分布列与数学期望.
当前题号:6 | 题型:解答题 | 难度:0.99
某市环保部门对该市市民进行了一次垃圾分类知识的网络问卷调查,每一位市民仅有一次参加机会,通过随机抽样,得到参加问卷调查的人的得分(满分:分)数据,统计结果如下表所示.
组别







频数





 

 
(1)已知此次问卷调查的得分服从正态分布近似为这人得分的平均值(同一组中的数据用该组区间的中点值为代表),请利用正态分布的知识求
(2)在(1)的条件下,环保部门为此次参加问卷调查的市民制定如下奖励方案.
(ⅰ)得分不低于的可以获赠次随机话费,得分低于的可以获赠次随机话费;
(ⅱ)每次赠送的随机话费和相应的概率如下表.
赠送的随机话费/元


概率


 
现市民甲要参加此次问卷调查,记为该市民参加问卷调查获赠的话费,求的分布列及数学期望.
附:,若,则.
当前题号:7 | 题型:解答题 | 难度:0.99
今年4月23日我市正式宣布实施“3+1+2”的高考新方案,“3”是指必考的语文、数学、外语三门学科,“1”是指在物理和历史中必选一科,“2”是指在化学、生物、政治、地理四科中任选两科.为了解我校高一学生在物理和历史中的选科意愿情况,进行了一次模拟选科. 已知我校高一参与物理和历史选科的有1800名学生,其中男生1000人,女生800人. 按分层抽样的方法从中抽取了36个样本,统计知其中有17个男生选物理,6个女生选历史.
(I)根据所抽取的样本数据,填写答题卷中的列联表. 并根据统计量判断能否有的把握认为选择物理还是历史与性别有关?
(II)在样本里选历史的人中任选4人,记选出4人中男生有人,女生有人,求随机变量 的分布列和数学期望.(的计算公式见下),临界值表:












 
当前题号:8 | 题型:解答题 | 难度:0.99
某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会.
A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;
X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.
当前题号:9 | 题型:解答题 | 难度:0.99
某中学利用周末组织教职员工进行了一次秋季登山健身的活动,有个人参加。现将所有参加者按年龄情况分为等七组.其频率分布直方图如图所示,已知这组的参加者是6人。

(I)根据此频率分布直方图求
(II)组织者从这组的参加者(其中共有4名女教师,其余全为男教师)中随机选取3名担任后勤保障工作,其中女教师的人数为,求的分布列、均值及方差.
(Ⅲ)已知这两组各有2名数学教师。现从这两个组中各选取2人担任接待工作,设两组的选择互不影响,求两组选出的人中恰有1名数学老师的概率
当前题号:10 | 题型:解答题 | 难度:0.99