我市准备实施天然气价格阶梯制,现提前调查市民对天然气价格阶梯制的态度,随机抽查了名市民,现将调查情况整理成了被调查者的频率分布直方图(如图)和赞成者的频数表如下:
年龄(岁)






赞成人数






 

(1)若从年龄在的被调查者中各随机选取人进行调查,求所选取的人中至少有人对天然气价格阶梯制持赞成态度的概率;
(2)若从年龄在的被调查者中各随机选取人进行调查,记选取的人中对天然气价格实施阶梯制持不赞成态度的人数为,求随机变量的分布列和数学期望.
当前题号:1 | 题型:解答题 | 难度:0.99
甲将要参加某决赛,赛前四位同学对冠军得主进行竞猜,每人选择一名选手,已知选择甲的概率均为选择甲的概率均为,且四人同时选择甲的概率为,四人均末选择甲的概率为
(1)求的值;
(2)设四位同学中选择甲的人数为,求的分布列和数学期望.
当前题号:2 | 题型:解答题 | 难度:0.99
已知某单位甲、乙、丙三个部门共有员工60人,为调查他们的睡眠情况,通过分层抽样获得部分员工每天睡眠的时间,数据如下表(单位:小时)
甲部门
6
7
8
 
 
 
乙部门
5.5
6
6.5
7
7.5
8
丙部门
5
5.5
6
6.5
7
8.5
 
(1)求该单位乙部门的员工人数?
(2)从甲部门和乙部门抽出的员工中,各随机选取一人,甲部门选出的员工记为A,乙部门选出的员工记为B,假设所有员工睡眠的时间相互独立,求A的睡眠时间不少于B的睡眠时间的概率;
(3)若将每天睡眠时间不少于7小时视为睡眠充足,现从丙部门抽出的员工中随机抽取3人做进一步的身体检查.用X表示抽取的3人中睡眠充足的员工人数,求随机变量X的分布列与数学期望.
当前题号:3 | 题型:解答题 | 难度:0.99
袋中装有9只球,其中标有数字1,2,3,4的小球各2个,标数字5的小球有1个.从袋中任取3个小球,每个小球被取出的可能性都相等,用表示取出的3个小球上的最大数字.
(1)求取出的3个小球上的数字互不相同的概率;
(2)求随机变量的分布列和期望.
当前题号:4 | 题型:解答题 | 难度:0.99
某“双一流”大学专业奖学金是以所学专业各科考试成绩作为评选依据,分为专业一等奖学金(奖金额元)、专业二等奖学金(奖金额元)及专业三等奖学金(奖金额元),且专业奖学金每个学生一年最多只能获得一次.图(1)是统计了该校名学生周课外平均学习时间频率分布直方图,图(2)是这名学生在年周课外平均学习时间段获得专业奖学金的频率柱状图.

(Ⅰ)求这名学生中获得专业三等奖学金的人数;
(Ⅱ)若周课外平均学习时间超过小时称为“努力型”学生,否则称为“非努力型”学生,列联表并判断是否有的把握认为该校学生获得专业一、二等奖学金与是否是“努力型”学生有关?
(Ⅲ)若以频率作为概率,从该校任选一名学生,记该学生年获得的专业奖学金额为随机变量,求随机变量的分布列和期望.
当前题号:5 | 题型:解答题 | 难度:0.99
甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为,乙在每局中获胜的概率为,且各局胜负相互独立,比赛停止时一共已打局, 则的期望值______.
当前题号:6 | 题型:填空题 | 难度:0.99
4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动.为了解高三学生课外阅读情况,采用分层抽样的方法从高三某班甲、乙、丙、丁四个小组中随机抽取10名学生参加问卷调查.各组人数统计如下:

(1)从参加问卷调查的10名学生中随机抽取两名,求这两名学生来自同一个小组的概率;
(2)在参加问卷调查的10名学生中,从来自甲、丙两个小组的学生中随机抽取两名,用表示抽得甲组学生的人数,求的分布列和数学期望.
当前题号:7 | 题型:解答题 | 难度:0.99
2017年3月智能共享单车项目正式登陆某市,两种车型“小绿车”、“小黄车”采用分时段计费的方式,“小绿车”每30分钟收费不足30分钟的部分按30分钟计算;“小黄车”每30分钟收费1元不足30分钟的部分按30分钟计算有甲、乙、丙三人相互独立的到租车点租车骑行各租一车一次设甲、乙、丙不超过30分钟还车的概率分别为,三人租车时间都不会超过60分钟甲、乙均租用“小绿车”,丙租用“小黄车”.
求甲、乙两人所付的费用之和等于丙所付的费用的概率;
2设甲、乙、丙三人所付的费用之和为随机变量,求的分布列和数学期望.
当前题号:8 | 题型:解答题 | 难度:0.99
中国农业银行开始为全国农行ATM机安装刷脸取款系统.某农行营业点为调查居民对刷脸取款知识的了解情况,制作了刷脸取款知识有奖调查问卷,发放给2018年度该行的所有客户,并从参与调查且年龄(单位:岁)在[25,55]内的客户中随机抽取100名给予物质奖励,再从中选出一名客户参加幸运大抽奖.调查结果按年龄分成6组,制作成如下的频数分布表和女客户的年龄茎叶图,其中abc=2∶4∶5.
年龄/
[25,30)
[30,35)
[35,40)
[40,45)
[45,50)
[50,55]
频数/
5
a
b
c
15
25
 
女客户的年龄茎叶图

幸运大抽奖方案如下:客户最多有两次抽奖机会,每次抽奖的中奖率均为,第一次抽奖,若未中奖,则抽奖结束.若中奖,则通过抛掷一枚质地均匀的硬币,决定是否继续进行第二次抽奖.规定:抛出的硬币,若反面朝上,则客户获得5000元奖金,不进行第二次抽奖;若正面朝上,客户需进行第二次抽奖,且在第二次抽奖中,如果中奖,则获得奖金10000元,如果未中奖,则所获得的奖金为0元.
(1)求a,b,c的值,若分别从男、女客户中随机选取1人,求这2人的年龄均在[40,45)内的概率;
(2)若参加幸运大抽奖的客户所获奖金(单位:元)用X表示,求X的分布列与数学期望E(X).
当前题号:9 | 题型:解答题 | 难度:0.99
某仪器经过检验合格才能出厂,初检合格率为;若初检不合格,则需要进行调试,经调试后再次对其进行检验;若仍不合格,作为废品处理,再检合格率为.每台仪器各项费用如表:
项目
生产成本
检验费/次
调试费
出厂价
金额(元)




 
(1)求每台仪器能出厂的概率;
(2)求生产一台仪器所获得的利润为元的概率(注:利润=出厂价-生产成本-检验费-调试费);
(3)假设每台仪器是否合格相互独立,记为生产两台仪器所获得的利润,求的分布列和数学期望.
当前题号:10 | 题型:解答题 | 难度:0.99