- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 求离散型随机变量的均值
- 均值的性质
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念,记交通指数为
,其范围为
,分为五个级别,
畅通;
基本畅通;
轻度拥堵;
中度拥堵;
严重拥堵.早高峰时段(
),从某市交通指挥中心随机选取了三环以内的50个交通路段,依据其交通指数数据绘制的频率分布直方图如图.

(1)这50个路段为中度拥堵的有多少个?
(2)据此估计,早高峰三环以内的三个路段至少有一个是严重拥堵的概率是多少?
(3)某人上班路上所用时间若畅通时为20分钟,基本畅通为30分钟,轻度拥堵为36分钟,中度拥堵为42分钟,严重拥堵为60分钟,求此人所用时间的数学期望.









(1)这50个路段为中度拥堵的有多少个?
(2)据此估计,早高峰三环以内的三个路段至少有一个是严重拥堵的概率是多少?
(3)某人上班路上所用时间若畅通时为20分钟,基本畅通为30分钟,轻度拥堵为36分钟,中度拥堵为42分钟,严重拥堵为60分钟,求此人所用时间的数学期望.
袋子中装有大小形状完全相同的5个小球,其中红球3个白球2个,现每次从中不放回的取出一球,直到取到白球停止.
(1)求取球次数
的分布列;
(2)求取球次数
的期望和方差.
(1)求取球次数

(2)求取球次数

在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设
分别表示甲,乙,丙3个盒中的球数.
(Ⅰ)求
的概率;
(Ⅱ)记
求随机变量
的概率分布列和数学期望.

(Ⅰ)求

(Ⅱ)记


某研究性学习小组为了调查研究学生玩手机对学习的影响,现抽取了30名学生,得到数据如表:
已知在全部的30人中随机抽取1人,抽到不玩手机的概率为
.
(1)请将2×2列联表补充完整;
(2)能否在犯错误的概率不超过0.005的前提下认为玩手机对学习有影响;
(3)现从不玩手机,学习成绩优秀的8名学生中任意选取两人,对他们的学习情况进行全程跟踪,记甲、乙两名学生被抽到的人数为X,求X的分布列和数学期望.
附:
.
| 玩手机 | 不玩手机 | 合计 |
学习成绩优秀 | | 8 | |
学习成绩不优秀 | 16 | | |
合计 | | | 30 |
已知在全部的30人中随机抽取1人,抽到不玩手机的概率为

(1)请将2×2列联表补充完整;
(2)能否在犯错误的概率不超过0.005的前提下认为玩手机对学习有影响;
(3)现从不玩手机,学习成绩优秀的8名学生中任意选取两人,对他们的学习情况进行全程跟踪,记甲、乙两名学生被抽到的人数为X,求X的分布列和数学期望.
附:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |

某校为了推动数学教学方法的改革,学校将高一年级部分生源情况基本相同的学生分成甲、乙两个班,每班各40人,甲班按原有模式教学,乙班实施教学方法改革.经过一年的教学实验,将甲、乙两个班学生一年来的数学成绩取平均数,两个班学生的平均成绩均在
,按照区间
,
,
,
,
进行分组,绘制成如下频率分布直方图,规定不低于80分(百分制)为优秀.

完成表格,并判断是否有
以上的把握认为“数学成绩优秀与教学改革有关”;

(2)从乙班
,
,
分数段中,按分层抽样随机抽取7名学生座谈,从中选三位同学发言,记来自
发言的人数为随机变量
,求
的分布列和期望.







完成表格,并判断是否有


(2)从乙班






某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在
,
,
,
,
,
(单位:克)中,经统计得频率分布直方图如图所示.

(1)现按分层抽样从质量为
,
的芒果中随机抽取
个,再从这
个中随机抽取
个,记随机变量
表示质量在
内的芒果个数,求
的分布列及数学期望.
(2)以各组数据的中间数代表这组数据的平均值,将频率视为概率,某经销商来收购芒果,该种植园中还未摘下的芒果大约还有
个,经销商提出如下两种收购方案:
A:所以芒果以
元/千克收购;
B:对质量低于
克的芒果以
元/个收购,高于或等于
克的以
元/个收购.
通过计算确定种植园选择哪种方案获利更多?







(1)现按分层抽样从质量为








(2)以各组数据的中间数代表这组数据的平均值,将频率视为概率,某经销商来收购芒果,该种植园中还未摘下的芒果大约还有

A:所以芒果以

B:对质量低于




通过计算确定种植园选择哪种方案获利更多?
乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分,设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.
(1)求开始第4次发球时,甲、乙的比分为1比2的概率;
(2)
表示开始第4次发球时乙的得分,求
的期望.
(1)求开始第4次发球时,甲、乙的比分为1比2的概率;
(2)


某机构用“10分制”调查了各阶层人士对某次国际马拉松赛事的满意度,现从调查人群中随机抽取16名,如图茎叶图记录了他们的满意度分数
以小数点前的一位数字为茎,小数点后的一位数字为叶
:

(1)指出这组数据的众数和中位数;
(2)若满意度不低于
分,则称该被调查者的满意度为“极满意”,求从这16人中随机选取3人,至少有2人满意度是“极满意”的概率;
(3)以这16人的样本数据来估计整个被调查群体的总体数据,若从该被调查群体
人数很多
任选3人,记
表示抽到“极满意”的人数,求
的分布列及数学期望.



(1)指出这组数据的众数和中位数;
(2)若满意度不低于

(3)以这16人的样本数据来估计整个被调查群体的总体数据,若从该被调查群体




甲,乙二人进行乒乓球比赛,已知每一局比赛甲胜乙的概率是
,假设每局比赛结果相互独立.
(Ⅰ)比赛采用三局两胜制,即先获得两局胜利的一方为获胜方,这时比赛结束.求在一场比赛中甲获得比赛胜利的概率;
(Ⅱ)比赛采用三局两胜制,设随机变量
为甲在一场比赛中获胜的局数,求
的分布列和均值;
(Ⅲ)有以下两种比赛方案:方案一,比赛采用五局三胜制;方案二,比赛采用七局四胜制.问哪个方案对甲更有利.(只要求直接写出结果)

(Ⅰ)比赛采用三局两胜制,即先获得两局胜利的一方为获胜方,这时比赛结束.求在一场比赛中甲获得比赛胜利的概率;
(Ⅱ)比赛采用三局两胜制,设随机变量


(Ⅲ)有以下两种比赛方案:方案一,比赛采用五局三胜制;方案二,比赛采用七局四胜制.问哪个方案对甲更有利.(只要求直接写出结果)