- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 求离散型随机变量的均值
- 均值的性质
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
思南县第九届中小学运动会于2019年6月13日在思南中学举行,组委会在思南中学招募了12名男志愿者和18名女志愿者,将这30名志愿者的身高如图所示的茎叶图(单位:cm),身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”,且只有“女高个子”才担任“礼仪小姐”.
(1)如果用分层抽样的方法从“高个子”和“非高个子”中共抽取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?
(2)若从所有“高个子”中选3名志愿者,用
表示所选志愿者中能担任“礼仪小姐”的人数,求出
的分布列和数学期望.
男 | | 女 | ||||||||
| | | 9 | 15 | 7 | 7 | 8 | 9 | 9 | |
| | 9 | 8 | 16 | 1 | 2 | 4 | 5 | 8 | 9 |
8 | 6 | 5 | 0 | 17 | 2 | 3 | 4 | 5 | 6 | |
7 | 4 | 2 | 1 | 18 | 0 | 1 | | | | |
| | | 1 | 19 | | | | | | |
(1)如果用分层抽样的方法从“高个子”和“非高个子”中共抽取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?
(2)若从所有“高个子”中选3名志愿者,用


新高考方案的考试科目简称“
”,“3”是指统考科目语数外,“1”指在首选科目“物理、历史”中任选1门,“2”指在再选科目“化学、生物、政治和地理”中任选2门组成每位同学的6门高考科目.假设学生在选科中,选修每门首选科目的机会均等,选择每门再选科目的机会相等.
(Ⅰ)求某同学选修“物理、化学和生物”的概率;
(Ⅱ)若选科完毕后的某次“会考”中,甲同学通过首选科目的概率是
,通过每门再选科目的概率都是
,且各门课程通过与否相互独立.用
表示该同学所选的3门课程在这次“会考”中通过的门数,求随机变量
的概率分布和数学期望.

(Ⅰ)求某同学选修“物理、化学和生物”的概率;
(Ⅱ)若选科完毕后的某次“会考”中,甲同学通过首选科目的概率是




点外卖现已成为上班族解决午餐问题的一种流行趋势.某配餐店为扩大品牌影响力,决定对新顾客实行让利促销,规定:凡点餐的新顾客均可获赠10元或者16元代金券一张,中奖率分别为
和
,每人限点一餐,且100%中奖.现有A公司甲、乙、丙、丁四位员工决定点餐试吃.
(Ⅰ) 求这四人中至多一人抽到16元代金券的概率;
(Ⅱ) 这四人中抽到10元、16元代金券的人数分别用
、
表示,记
,求随机变量
的分布列和数学期望.


(Ⅰ) 求这四人中至多一人抽到16元代金券的概率;
(Ⅱ) 这四人中抽到10元、16元代金券的人数分别用




学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同.每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)
(1)求在1次游戏中,
①摸出3个白球的概率;
②获奖的概率;
(2)求在2次游戏中获奖次数
的分布列.
(1)求在1次游戏中,
①摸出3个白球的概率;
②获奖的概率;
(2)求在2次游戏中获奖次数

某公园设有自行车租车点,租车的收费标准是每小时
元(不足一小时的部分按一小时计算).甲、乙两人各租一辆自行车,若甲、乙不超过一小时还车的概率分别为
,一小时以上且不超过两小时还车的概率分别为
,两人租车时间都不会超过三小时.
(1)求甲、乙两人所付租车费用相同的概率;
(2)设甲、乙两人所付的租车费用之和为随机变量
,求
的分布列与数学期望
.



(1)求甲、乙两人所付租车费用相同的概率;
(2)设甲、乙两人所付的租车费用之和为随机变量



某中学图书馆举行高中志愿者检索图书的比赛,从高一、高二两个年级各抽取10名志愿者参赛。在规定时间内,他们检索到的图书册数的茎叶图如图所示,规定册数不小于20的为优秀.
(Ⅰ) 从两个年级的参赛志愿者中各抽取两人,求抽取的4人中至少一人优秀的概率;
(Ⅱ) 从高一10名志愿者中抽取一人,高二10名志愿者中抽取两人,3人中优秀人数记为
,求
的分布列和数学期望.

(Ⅰ) 从两个年级的参赛志愿者中各抽取两人,求抽取的4人中至少一人优秀的概率;
(Ⅱ) 从高一10名志愿者中抽取一人,高二10名志愿者中抽取两人,3人中优秀人数记为


如图,在平面直角坐标系
中,质点P的起点为坐标原点
,每秒沿格线向右或向上随机移动一个单位长.

(1)求经过3秒后,质点P恰在点(1,2)处的概率;
(2)定义:点(x,y)的“平方距离”为
.求经过5秒后,质点P的“平方距离”
的概率分布和数学期望
.



(1)求经过3秒后,质点P恰在点(1,2)处的概率;
(2)定义:点(x,y)的“平方距离”为



![]() |
某商场经销某商品,根据以往资料统计,顾客采用的付款期数

商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.

(Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率
P(A);
(Ⅱ)求


袋中装着标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,每个小球被取出的可能性都相等,用
表示取出的3个小球上的最大数字.
I.求取出的3个小球上的数字互不相同的概率;
II.求随机变量
的分布列和期望.

I.求取出的3个小球上的数字互不相同的概率;
II.求随机变量
