小华与另外名同学进行“手心手背”游戏,规则是:人同时随机选择手心或手背其中一种手势,规定相同手势人数更多者每人得分,其余每人得分.现人共进行了次游戏,记小华次游戏得分之和为,则为(  )
A.B.C.D.
当前题号:1 | 题型:单选题 | 难度:0.99
,随机变量的分布列为

的数学期望取得最大值时,(    )
A.B.C.D.
当前题号:2 | 题型:单选题 | 难度:0.99
某闯关游戏共有两关,游戏规则:先闯第一关,当第一关闯过后,才能进入第二关,两关都闯过,则闯关成功,且每关各有两次闯关机会.已知闯关者甲第一关每次闯过的概率均为,第二关每次闯过的概率均为.假设他不放弃每次闯关机会,且每次闯关互不影响.
(1)求甲恰好闯关3次才闯关成功的概率;
(2)记甲闯关的次数为,求随机变量的分布列和期望.。
当前题号:3 | 题型:解答题 | 难度:0.99
为了研究学生的数学核心素养与抽象能力(指标)、推理能力(指标)、建模能力(指标)的相关性,将它们各自量化为1、2、3三个等级,再用综合指标的值评定学生的数学核心素养,若,则数学核心素养为一级;若,则数学核心素养为二级;若,则数学核心素养为三级,为了了解某校学生的数学核心素养,调查人员随机访问了某校10名学生,得到如下数据:
学生编号





















 
(1)在这10名学生中任取两人,求这两人的建模能力指标相同条件下综合指标值也相同的概率;
(2)在这10名学生中任取三人,其中数学核心素养等级是一级的学生人数记为,求随机变量的分布列及其数学期望.
当前题号:4 | 题型:解答题 | 难度:0.99
某工厂有甲乙两个车间,每个车间各有3台机器.甲车间每台机器每天发生故障的概率均为,乙车间3台机器每天发生概率分别为.若一天内同一车间的机器都不发生故障可获利2万元,恰有一台机器发生故障仍可获利1万元,恰有两台机器发生故障的利润为0万元,三台机器发生故障要亏损3万元.
(1)求乙车间每天机器发生故障的台数的分布列;
(2)由于节能减排,甲乙两个车间必须停产一个,以工厂获得利润的期望值为决策依据,你认为哪个车间停产比较合理.
当前题号:5 | 题型:解答题 | 难度:0.99
已知某校有歌唱和舞蹈两个兴趣小组,其中歌唱组有 4 名男生,1 名女生,舞蹈组有2 名男生,2 名女生,学校计划从两兴趣小组中各选2名同学参加演出.
(1)求选出的4名同学中至多有2名女生的选派方法数;
(2)记X为选出的4名同学中女生的人数,求X的分布列和数学期望.
当前题号:6 | 题型:解答题 | 难度:0.99
某小区为了调查居民的生活水平,随机从小区住户中抽取个家庭,得到数据如下:
家庭编号
1
2
3
4
5
6
月收入x(千元)
20
30
35
40
48
55
月支出y(千元)
4
5
6
8
8
11
 
参考公式:回归直线的方程是:,其中,.
(1)据题中数据,求月支出(千元)关于月收入(千元)的线性回归方程(保留一位小数);
(2)从这个家庭中随机抽取个,记月支出超过千家庭个数为,求的分布列与数学期望.
当前题号:7 | 题型:解答题 | 难度:0.99
为响应党中央号召,学校以“我们都是追梦人”为主题举行知识竞赛。现有10道题,其中6道甲类题,4道乙类题,王同学从中任取3道题解答.
(Ⅰ)求王同学至少取到2道乙类题的概率;
(Ⅱ)如果王同学答对每道甲类题的概率都是,答对每道乙类题的概率都是,且各题答对与否相互独立,已知王同学恰好选中2道甲类题,1道乙类题,用表示王同学答对题的个数,求随机变量的分布列和数学期望.
当前题号:8 | 题型:解答题 | 难度:0.99
五人进行过关游戏,每人随机出现左路和右路两种选择.若选择同一条路的人数超过2人,则他们每人得1分;若选择同一条路的人数小于3人,则他们每人得0分,记小强游戏得分为,则(  )
A.B.C.D.
当前题号:9 | 题型:单选题 | 难度:0.99