- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 求离散型随机变量的均值
- 均值的性质
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
近期,长沙市公交公司推出“湘行一卡通”
扫码支付乘车活动,活动设置了一段时间的推广期,乘客只需利用手机下载“湘行一卡通”
,再通过扫码即可支付乘车费用.相比传统的支付方式,扫码支付方式极为便利,吸引了越来越多的人使用扫码支付,某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用
表示活动推出的天数,
表示每天使用扫码支付的人次(单位:十人次),统计数据如下表所示:
根据以上数据,绘制了散点图.

(1)根据散点图判断,在推广期内,
与
(
,
均为大于零的常数)哪一个适宜作为扫码支付的人次
关于活动推出天数
的回归方程类型?(给出判断即可,不必说明理由);
(2)根据(1)的判断结果及表中的数据,建立
关于
的回归方程,并预测活动推出第
天使用扫码支付的人次;
(3)推广期结束后,车队对乘客的支付方式进行统计,结果如下
假设该线路公交车票价为
元,使用现金支付的乘客无优惠,使用乘车卡支付的乘客享受
折优惠,扫码支付的乘客随机优惠,根据统计结果得知,使用扫码支付的乘客中有
的概率享受
折优惠,有
的概率享受
折优惠,有
的概率享受
折优惠.根据给定数据以事件发生的频率作为相应事件发生的概率,在不考虑其它因素的条件下,求一名乘客一次乘车的平均费用.参考数据:
其中:
,
参考公式:对于一组数据
,
,…,
…,
,其回归直线
的斜率和截距的最小二乘估计公式分别为:
,
.




![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
根据以上数据,绘制了散点图.

(1)根据散点图判断,在推广期内,






(2)根据(1)的判断结果及表中的数据,建立



(3)推广期结束后,车队对乘客的支付方式进行统计,结果如下
支付方式 | 现金 | 乘车卡 | 扫码 |
比例 | ![]() | ![]() | ![]() |
假设该线路公交车票价为








![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() |
其中:


参考公式:对于一组数据








某公司生产的某种产品,如果年返修率不超过千分之一,则其生产部门当年考核优秀,现获得该公司2011-2018年的相关数据如下表所示:
注:年返修率=
(1)从该公司2011-2018年的相关数据中任意选取3年的数据,以
表示3年中生产部门获得考核优秀的次数,求
的分布列和数学期望;
(2)根据散点图发现2015年数据偏差较大,如果去掉该年的数据,试用剩下的数据求出年利润
(百万元)关于年生产台数
(万台)的线性回归方程(精确到0.01).
附:线性回归方程
中,
,
.
年份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年生产台数(万台) | 2 | 3 | 4 | 5 | 6 | 7 | 10 | 11 |
该产品的年利润(百万元) | 2.1 | 2.75 | 3.5 | 3.25 | 3 | 4.9 | 6 | 6.5 |
年返修台数(台) | 21 | 22 | 28 | 65 | 80 | 65 | 84 | 88 |
部分计算结果:![]() ![]() ![]() ![]() ![]() |
注:年返修率=

(1)从该公司2011-2018年的相关数据中任意选取3年的数据,以


(2)根据散点图发现2015年数据偏差较大,如果去掉该年的数据,试用剩下的数据求出年利润


附:线性回归方程




一个经销鲜花产品的微店,为保障售出的百合花品质,每天从云南鲜花基地空运固定数量的百合花,如有剩余则免费分赠给第二天购花顾客,如果不足,则从本地鲜花供应商处进货.今年四月前10天,微店百合花的售价为每支2元,云南空运来的百合花每支进价1.6元,本地供应商处百合花每支进价1.8元,微店这10天的订单中百合花的需求量(单位:支)依次为:251,255,231,243,263,241,265,255,244,252.

(Ⅰ)求今年四月前10天订单中百合花需求量的平均数和众数,并完成频率分布直方图;
(Ⅱ)预计四月的后20天,订单中百合花需求量的频率分布与四月前10天相同,请根据(Ⅰ)中频率分布直方图(同一组中的需求量数据用该组区间的中点值作代表,位于各区间的频率代替位于该区间的概率):
(1)写出四月后20天每天百合花需求量
的分布列;
(2)若百合花进货价格与售价均不变,微店从四月十一日起,每天从云南固定空运
支百合花,当
为多少时,四月后20天每天百合花销售利润
(单位:元)的期望值最大?

(Ⅰ)求今年四月前10天订单中百合花需求量的平均数和众数,并完成频率分布直方图;
(Ⅱ)预计四月的后20天,订单中百合花需求量的频率分布与四月前10天相同,请根据(Ⅰ)中频率分布直方图(同一组中的需求量数据用该组区间的中点值作代表,位于各区间的频率代替位于该区间的概率):
(1)写出四月后20天每天百合花需求量

(2)若百合花进货价格与售价均不变,微店从四月十一日起,每天从云南固定空运



某市在2018年2月份的高三期末考试中对数学成绩数据统计显示,全市10000名学生的成绩服从正态分布
.现某校随机抽取了50名学生的数学成绩分析,结果这50名学生的成绩全部介于85分至145分之间,现将结果按如下方式分为6组,第一组
,第二组
,第六组
,得到如图所示的频率分布直方图.

(1)试估计该校数学成绩的平均分数;
(2)若从这50名学生中成绩在125分(含125分)以上的同学中任意抽取3人,该3人在全市前13名的人数记为
,求
的分布列和期望.
附:若
,则
,
.





(1)试估计该校数学成绩的平均分数;
(2)若从这50名学生中成绩在125分(含125分)以上的同学中任意抽取3人,该3人在全市前13名的人数记为


附:若



某机构对A市居民手机内安装的“APP”(英文Application的缩写,一般指手机软件)的个数和用途进行调研,在使用智能手机的居民中随机抽取了100人,获得了他们手机内安装APP的个数,整理得到如图所示频率分布直方图:

(Ⅰ)从A市随机抽取一名使用智能手机的居民,试估计该居民手机内安装APP的个数不低于30的概率;
(Ⅱ)从A市随机抽取3名使用智能手机的居民进一步做调研,用X表示这3人中手机内安装APP的个数在[20,40)的人数.
①求随机变量X的分布列及数学期望;
②用Y1表示这3人中安装APP个数低于20的人数,用Y2表示这3人中手机内安装APP的个数不低于40的人数.试比较EY1和EY2的大小.(只需写出结论)

(Ⅰ)从A市随机抽取一名使用智能手机的居民,试估计该居民手机内安装APP的个数不低于30的概率;
(Ⅱ)从A市随机抽取3名使用智能手机的居民进一步做调研,用X表示这3人中手机内安装APP的个数在[20,40)的人数.
①求随机变量X的分布列及数学期望;
②用Y1表示这3人中安装APP个数低于20的人数,用Y2表示这3人中手机内安装APP的个数不低于40的人数.试比较EY1和EY2的大小.(只需写出结论)
某班的健康调查小组从所在学校共选取15名男同学,其年龄、身高和体重数据如下表所示(本题中身高单位:
,体重单位:
).
(1)如果某同学“身高-体重
”,则认为该同学超重,从上述15名同学中任选两名同学,其中超重的同学人数为
,求
的分布列和数学期望;
(2)根据表中数据,设计两种方案预测学生身高.方案①:建立平均体重与年龄的线性回归模型,表中各年龄的体重按三名同学的平均体重计算,数据整理如下表.
方案②:建立平均体重与平均身高的线性回归模型,将所有数据按身高重新分成6组:
,
,
,
,
,
,并将每组的平均身高依次折算为155,160,165,170,175,180,各组的体重按平均体重计算,数据整理如下表.
(i)用方案①预测20岁男同学的平均体重和用方案②预测身高
的男同学的平均体重,你认为哪个更合理?请给出理由;
(ii)请根据方案②建立平均体重
与平均身高
的线性回归方程
(数据精确到0.01).
附:
,
.
,
,
,
.


年龄 | (身高,体重) | 年龄 | (身高,体重) |
15 | ![]() ![]() ![]() | 18 | ![]() ![]() ![]() |
16 | ![]() ![]() ![]() | 19 | ![]() ![]() ![]() |
17 | ![]() ![]() ![]() | | |
(1)如果某同学“身高-体重



(2)根据表中数据,设计两种方案预测学生身高.方案①:建立平均体重与年龄的线性回归模型,表中各年龄的体重按三名同学的平均体重计算,数据整理如下表.
![]() | 1 | 2 | 3 | 4 | 5 |
年龄![]() | 15 | 16 | 17 | 18 | 19 |
平均体重![]() | 59 | 63.3 | 64 | 70 | 69.7 |
方案②:建立平均体重与平均身高的线性回归模型,将所有数据按身高重新分成6组:






![]() | 1 | 2 | 3 | 4 | 5 | 6 |
平均身高![]() | 155 | 160 | 165 | 170 | 175 | 180 |
平均体重![]() | 48 | 57 | 63 | 68 | 74 | 82 |
(i)用方案①预测20岁男同学的平均体重和用方案②预测身高

(ii)请根据方案②建立平均体重



附:







某工厂用甲、乙两种不同工艺生产一大批同一种零件,零件尺寸均在[21.7,22.3](单位:cm)之间的零件,把零件尺寸在[21.9,22.1)的记为一等品,尺寸在[21.8,21.9)
[22.1,22.2)的记为二等品,尺寸在[21.7,21.8)
[22.2,22.3]的记为三等品,现从甲、乙工艺生产的零件中各随机抽取100件产品,所得零件尺寸的频率分布直方图如图所示:

(Ⅰ)根据上述数据完成下列2×2列联表,根据此数据你认为选择不同的工艺与一等品产出率是否有关?
附:
,其中
.
(Ⅱ)以上述两种工艺中各种产品的频率作为相应产品产出的概率,若一等品、二等品、三等品的单件利润分别为30元、20元、15元,从一件产品的平均利润考虑,你认为以后该工厂应该选择哪种工艺生产该种零件?请说明理由.



(Ⅰ)根据上述数据完成下列2×2列联表,根据此数据你认为选择不同的工艺与一等品产出率是否有关?
| 甲工艺 | 乙工艺 | 总计 |
一等品 | | | |
非一等品 | | | |
总计 | | | |
P(K2≥k) | 0.1 | 0.05 | 0.01 |
k | 2.706 | 3.841 | 6.635 |
附:


(Ⅱ)以上述两种工艺中各种产品的频率作为相应产品产出的概率,若一等品、二等品、三等品的单件利润分别为30元、20元、15元,从一件产品的平均利润考虑,你认为以后该工厂应该选择哪种工艺生产该种零件?请说明理由.
某中药种植基地有两处种植区的药材需在下周一、下周二两天内采摘完毕,基地员工一天可以完成一处种植区的采摘.由于下雨会影响药材品质,基地收益如下表所示:
若基地额外聘请工人,可在周一当天完成全部采摘任务.无雨时收益为20万元,有雨时收益为10万元.额外聘请工人的成本为a万元.已知下周一和下周二有雨的概率相同,两天是否下雨互不影响,基地收益为20万元的概率为0.36.
(1)若不额外聘请工人,写出基地收益X的分布列及基地的预期收益;
(2)该基地是否应该外聘工人,请说明理由.
下周一 | 无雨 | 无雨 | 有雨 | 有雨 |
下周二 | 无雨 | 有雨 | 无雨 | 有雨 |
收益 | 20万元 | 15万元 | 10万元 | 7.5万元 |
若基地额外聘请工人,可在周一当天完成全部采摘任务.无雨时收益为20万元,有雨时收益为10万元.额外聘请工人的成本为a万元.已知下周一和下周二有雨的概率相同,两天是否下雨互不影响,基地收益为20万元的概率为0.36.
(1)若不额外聘请工人,写出基地收益X的分布列及基地的预期收益;
(2)该基地是否应该外聘工人,请说明理由.
网约车的兴起丰富了民众出行的选择,为民众出行提供便利的同时也解决了很多劳动力的就业问题.据某著名网约车公司“滴滴打车”官网显示,截止目前,该公司已经累计解决退伍军人转业为兼职或专职司机三百多万人次,梁某即为此类网约车司机,据梁某自己统计某一天出车一次的总路程数可能的取值是20、22、24、26、28、
,它们出现的概率依次是
、
、
、
、t、
.
(1)求这一天中梁某一次行驶路程X的分布列,并求X的均值和方差;
(2)网约车计费细则如下:起步价为5元,行驶路程不超过
时,租车费为5元,若行驶路程超过
,则按每超出
(不足
也按
计程)收费3元计费.依据以上条件,计算梁某一天中出车一次收入的均值和方差.






(1)求这一天中梁某一次行驶路程X的分布列,并求X的均值和方差;
(2)网约车计费细则如下:起步价为5元,行驶路程不超过




