- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 求离散型随机变量的均值
- 均值的性质
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在湖南师大附中的校园歌手大赛决赛中,有6位参赛选手(1号至6号)登台演出,由现场的100位同学投票选出最受欢迎的歌手,各位同学须彼此独立地在投票器上选出3位侯选人,其中甲同学是1号选手的同班同学,必选1号,另在2号至6号选手中随机选2名;乙同学不欣赏2号选手,必不选2号,在其他5位选手中随机选出3名;丙同学对6位选手的演唱没有偏爱,因此在1号至6号选手中随机选出3名.
(1)求同学甲选中3号且同学乙未选中3号选手的概率;
(2)设3号选手得到甲、乙、丙三位同学的票数之和为X,求X的分布列和数学期望.
(1)求同学甲选中3号且同学乙未选中3号选手的概率;
(2)设3号选手得到甲、乙、丙三位同学的票数之和为X,求X的分布列和数学期望.
某工厂有甲,乙两个车间生产同一种产品,,甲车间有工人
人,乙车间有工人
人,为比较两个车间工人的生产效率,采用分层抽样的方法抽取工人,甲车间抽取的工人记作第一组,乙车间抽取的工人记作第二组,并对他们中每位工人生产完成的一件产品的事件(单位:
)进行统计,按照
进行分组,得到下列统计图.

分别估算两个车间工人中,生产一件产品时间少于
的人数
分别估计两个车间工人生产一件产品时间的平均值,并推测车哪个车间工人的生产效率更高?
从第一组生产时间少于
的工人中随机抽取
人,记抽取的生产时间少于
的工人人数为随机变量
,求
的分布列及数学期望.














某水产品经销商销售某种鲜鱼,售价为每千克
元,成本为每千克
元,销售宗旨是当天进货当天销售,如果当天卖不完,那么未售出的部分全部处理,平均每千克损失
元.根据以往的市场调查,将市场日需求量(单位:千克)按
,
,
,
,
进行分组,得到如图的频率分布直方图.

(Ⅰ)未来连续三天内,连续两天该种鲜钱的日需求量不低于
千克,而另一天的日需求量低于
千克的概率;
(Ⅱ)在频率分布直方图的日需求量分组中,以各组区间的中点值代表该组的各个值,并以日需求量落入该区间的频率作为日需求量取该区间中点值的概率.若经销商每日进货
千克,记经销商每日利润为
(单位:元),求
的分布列和数学期望.









(Ⅰ)未来连续三天内,连续两天该种鲜钱的日需求量不低于


(Ⅱ)在频率分布直方图的日需求量分组中,以各组区间的中点值代表该组的各个值,并以日需求量落入该区间的频率作为日需求量取该区间中点值的概率.若经销商每日进货



2018年6月14日,世界杯足球赛在俄罗斯拉开帷幕,世界杯给俄罗斯经济带来了一定的增长,某纪念商品店的销售人员为了统计世界杯足球赛期间商品的销售情况,随机抽查了该商品商店某天200名顾客的消费金额情况,得到如图频率分布表:将消费顾客超过4万卢布的顾客定义为”足球迷”,消费金额不超过4万卢布的顾客定义为“非足球迷”.
(1)求这200名顾客消费金额的中位数与平均数(同一组中的消费金额用该组的中点值作代表;
(2)该纪念品商店的销售人员为了进一步了解这200名顾客喜欢纪念品的类型,采用分层抽样的方法从“非足球迷”,“足球迷”中选取5人,再从这5人中随机选取3人进行问卷调查,则选取的3人中“非足球迷”人数的分布列和数学期望.
消费金额/万卢布 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | 合计 |
顾客人数 | 9 | 31 | 36 | 44 | 62 | 18 | 200 |
(1)求这200名顾客消费金额的中位数与平均数(同一组中的消费金额用该组的中点值作代表;
(2)该纪念品商店的销售人员为了进一步了解这200名顾客喜欢纪念品的类型,采用分层抽样的方法从“非足球迷”,“足球迷”中选取5人,再从这5人中随机选取3人进行问卷调查,则选取的3人中“非足球迷”人数的分布列和数学期望.
某机器生产商,对一次性购买两台机器的客户推出两种超过质保期后两年内的延保维修方案:
方案一:交纳延保金
元,在延保的两年内可免费维修
次,超过
次每次收取维修费
元;
方案二:交纳延保金
元,在延保的两年内可免费维修
次,超过
次每次收取维修费
元.
某工厂准备一次性购买两台这种机器,现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了台这种机器超过质保期后延保两年内维修的次数,统计得下表:
以上
台机器维修次数的频率代替一台机器维修次数发生的概率,记
表示这两台机器超过质保期后延保两年内共需维修的次数.
求
的分布列;
以所需延保金与维修费用之和的期望值为决策依据,该工厂选择哪种延保方案更合算?
方案一:交纳延保金




方案二:交纳延保金




某工厂准备一次性购买两台这种机器,现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了台这种机器超过质保期后延保两年内维修的次数,统计得下表:
维修次数 | 0 | 1 | 2 | 3 |
机器台数 | 20 | 10 | 40 | 30 |
以上





2019年2月25日,第
届罗马尼亚数学大师赛(简称
)于罗马尼亚首都布加勒斯特闭幕,最终成绩揭晓,以色列选手排名第一,而中国队无一人获得金牌,最好成绩是获得银牌的第
名,总成绩排名第
.而在分量极重的国际数学奥林匹克(
)比赛中,过去拿冠军拿到手软的中国队,也已经有连续
年没有拿到冠军了.人们不禁要问“中国奥数究竟怎么了?”,一时间关于各级教育主管部门是否应该下达“禁奥令”成为社会热点.某重点高中培优班共
人,现就这
人“禁奥令”的态度进行问卷调查,得到如下的列联表:
若采用分层抽样的方法从
人中抽出
人进行重点调查,知道其中认为不应下“禁奥令”的同学共有
人.
(1)请将上面的列联表补充完整,并判断是否有
的把握认为对下“禁奥令”的态度与性别有关?请说明你的理由;
(2)现从这
人中抽出
名男生、
名女生,记此
人中认为不应下“禁奥令”的人数为
,求
的分布列和数学期望.
参考公式与数据:








| 不应下“禁奥令” | 应下“禁奥令” | 合计 |
男生 | | 5 | |
女生 | 10 | | |
合计 | | | 50 |
若采用分层抽样的方法从



(1)请将上面的列联表补充完整,并判断是否有

(2)现从这






参考公式与数据:

![]() | 0.100 | 0.050 | 0.010 | 0.001 |
![]() | 2.706 | 3.841 | 6.635 | 10.828 |
某工厂有两个车间生产同一种产品,第一车间有工人200人,第二车间有工人400人,为比较两个车间工人的生产效率,采用分层抽样的方法抽取工人,并对他们中每位工人生产完成一件产品的时间(单位:min)分别进行统计,得到下列统计图表(按照[55,65),[65,75),[75,85),[85,95]分组).
第一车间样本频数分布表
(Ⅰ)分别估计两个车间工人中,生产一件产品时间小于75min的人数;
(Ⅱ)分别估计两车间工人生产时间的平均值,并推测哪个车间工人的生产效率更高?(同一组中的数据以这组数据所在区间中点的值作代表)
(Ⅲ)从第一车间被统计的生产时间小于75min的工人中,随机抽取3人,记抽取的生产时间小于65min的工人人数为随机变量X,求X的分布列及数学期望.
分组 | 频数 |
[55,65) | 2 |
[65,75) | 4 |
[75,85) | 10 |
[85,95] | 4 |
合计 | 20 |
第一车间样本频数分布表
(Ⅰ)分别估计两个车间工人中,生产一件产品时间小于75min的人数;
(Ⅱ)分别估计两车间工人生产时间的平均值,并推测哪个车间工人的生产效率更高?(同一组中的数据以这组数据所在区间中点的值作代表)
(Ⅲ)从第一车间被统计的生产时间小于75min的工人中,随机抽取3人,记抽取的生产时间小于65min的工人人数为随机变量X,求X的分布列及数学期望.

有一片产量很大的水果种植园,在临近成熟时随机摘下某品种水果100个,其质量(均在l至11kg)频数分布表如下(单位: kg):
以各组数据的中间值代表这组数据的平均值,将频率视为概率.
(1)由种植经验认为,种植园内的水果质量
近似服从正态分布
,其中
近似为样本平均数
近似为样本方差
.请估算该种植园内水果质量在
内的百分比;
(2)现在从质量为
的三组水果中用分层抽样方法抽取14个水果,再从这14个水果中随机抽取3个.若水果质量
的水果每销售一个所获得的的利润分别为2元,4元,6元,记随机抽取的3个水果总利润为
元,求
的分布列及数学期望.
附:
,则
.
分组 | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 10 | 15 | 45 | 20 | 10 |
以各组数据的中间值代表这组数据的平均值,将频率视为概率.
(1)由种植经验认为,种植园内的水果质量






(2)现在从质量为




附:



某研究小组在电脑上进行人工降雨模拟实验,准备用A、B、C三种人工降雨方式分别对甲、乙、丙三地实施人工降雨,其实验数据统计如下:
假定对甲、乙、丙三地实施的人工降雨彼此互不影响,请你根据人工降雨模拟实验的统计数据:
(1)求甲、乙、丙三地都恰为中雨的概率;
(2)考虑到旱情和水土流失,如果甲地恰需中雨即达到理想状态,乙地必须是大雨才达到理想状态,丙地只要是小雨或中雨即达到理想状态,记“甲、乙、丙三地中达到理想状态的个数”为随机变量ξ,求随机变量ξ的分布列和均值E(ξ).
方式 | 实施地点 | 大雨 | 中雨 | 小雨 | 模拟实验总次数 |
A | 甲 | 4次 | 6次 | 2次 | 12次 |
B | 乙 | 3次 | 6次 | 3次 | 12次 |
C | 丙 | 2次 | 2次 | 8次 | 12次 |
假定对甲、乙、丙三地实施的人工降雨彼此互不影响,请你根据人工降雨模拟实验的统计数据:
(1)求甲、乙、丙三地都恰为中雨的概率;
(2)考虑到旱情和水土流失,如果甲地恰需中雨即达到理想状态,乙地必须是大雨才达到理想状态,丙地只要是小雨或中雨即达到理想状态,记“甲、乙、丙三地中达到理想状态的个数”为随机变量ξ,求随机变量ξ的分布列和均值E(ξ).
为了解某校今年高三毕业班报考飞行员学生的体重情况,将所得的数据整理后,画出了如图所示的频率分布直方图.已知图中从左到右的前三组的频率之比为1:2:3,其中体重在
的有5人.

(1)求该校报考飞行员的总人数;
(2)从该校报考飞行员的体重在
学生中任选3人,设
表示体重超过70
的学生人数,求
的分布列和数学期望.


(1)求该校报考飞行员的总人数;
(2)从该校报考飞行员的体重在



