- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 离散型随机变量的均值
- 求离散型随机变量的均值
- 均值的性质
- 常用分布的均值
- 离散型随机变量的方差
- 常用分布的方差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为
, 乙在每局中获胜的概率为
,且各局胜负相互独立,则比赛停止时已打局数
的期望
为( )




A.![]() | B.![]() | C.![]() | D.![]() |
已知随机变量
满足
,
,
,若
,则( )





A.![]() ![]() ![]() ![]() |
B.![]() ![]() ![]() ![]() |
C.![]() ![]() ![]() ![]() |
D.![]() ![]() ![]() ![]() |
小明设置的手机开机密码若连续3次输入错误,则手机被锁定,5分钟后,方可重新输入.
(2)设第
次输入后能成功开机,求
的分布列和数学期望
.
某日,小明忘记了开机密码,但可以确定正确的密码是他常用的4个密码之一,于是,他
决定逐个(不重复)进行尝试.
(1)求手机被锁定的概率;(2)设第



某校举办“中国诗词大赛”活动,某班派出甲乙两名选手同时参加比赛. 大赛设有15个诗词填空题,其中“唐诗”、“宋词”和“***诗词”各5个.每位选手从三类诗词中各任选1个进行作答,3个全答对选手得3分,答对2个选手得2分,答对1个选手得1分,一个都没答对选手得0分. 已知“唐诗”、“宋词”和“***诗词”中甲能答对的题目个数依次为5,4,3,乙能答对的题目个数依此为4,5,4,假设每人各题答对与否互不影响,甲乙两人答对与否也互不影响.
求:(1)甲乙两人同时得到3分的概率;
求:(1)甲乙两人同时得到3分的概率;
(2)甲乙两人得分之和的分布列和数学期望.
网上购物逐步走进大学生活,某大学学生宿舍4人积极参加网购,大家约定:每个人通过掷一枚质地均匀的骰子决定自己去哪家购物,掷出点数为5或6的人去淘宝网购物,掷出点数小于5的人去京东商城购物,且参加者必须从淘宝网和京东商城选择一家购物.
(1)求这4个人中恰有2人去淘宝网购物的概率;
(2)求这4个人中去淘宝网购物的人数大于去京东商城购物的人数的概率:
(3)用X,Y分别表示这4个人中去淘宝网购物的人数和去京东商城购物的人数,记
,求随机变量
的分布列与数学期望
.
(1)求这4个人中恰有2人去淘宝网购物的概率;
(2)求这4个人中去淘宝网购物的人数大于去京东商城购物的人数的概率:
(3)用X,Y分别表示这4个人中去淘宝网购物的人数和去京东商城购物的人数,记



2017年7月4日,外交部发言人耿爽就印军非法越境事件召开新闻发布会,参加的记者总人数为200人,其他区性的分类如下:
因时间的因素,此次招待会只选10位记者向耿爽提问,但每位记者至多提问一次.按照分层抽样法,欧美恰有1位记者得到提问机会.
(1)求
的值;
(2)求前四次提问中,中国大陆记者得到提问的人数的分布列及数学期望.
地区 | 中国大陆 | 港、澳、台 | 欧美 | 其他 |
人数 | 60 | 40 | ![]() | ![]() |
因时间的因素,此次招待会只选10位记者向耿爽提问,但每位记者至多提问一次.按照分层抽样法,欧美恰有1位记者得到提问机会.
(1)求

(2)求前四次提问中,中国大陆记者得到提问的人数的分布列及数学期望.
某学校为了给运动会选拔志愿者,组委会举办了一个趣味答题活动.参选的志愿者回答三个问题,其中二个是判断题,另一个是有三个选项的单项选择题,设
为回答正确的题数,则随机变量
的数学期望
( )



A.1 | B.![]() | C.![]() | D.2 |
某公司为了准确把握市场,做好产品计划,特对某产品做了市场调查:先销售该产品50天,统计发现每天的销售量
分布在
内,且销售量
的分布频率
.
(Ⅰ)求
的值并估计销售量的平均数;
(Ⅱ)若销售量大于等于70,则称该日畅销,其余为滞销.在畅销日中用分层抽样的方法随机抽取8天,再从这8天中随机抽取3天进行统计,设这3天来自
个组,求随机变量
的分布列及数学期望(将频率视为概率).




(Ⅰ)求

(Ⅱ)若销售量大于等于70,则称该日畅销,其余为滞销.在畅销日中用分层抽样的方法随机抽取8天,再从这8天中随机抽取3天进行统计,设这3天来自


在某批次的某种灯泡中,随机地抽取
个样品,并对其寿命进行追踪调查,将结果列成频率分布表如下.根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于
天的灯泡是优等品,寿命小于
天的灯泡是次品,其余的灯泡是正品.
(Ⅰ)根据频率分布表中的数据,写出
,
的值.
(Ⅱ)某人从灯泡样品中随机地购买了
个,求
个灯泡中恰有一个是优等品的概率.
(Ⅲ)某人从这个批次的灯泡中随机地购买了
个进行使用,若以上述频率作为概率,用
表示此人所购买的灯泡中次品的个数,求
的分布列和数学期望.



寿命(天) | 频数 | 频率 |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
合计 | ![]() | ![]() |
(Ⅰ)根据频率分布表中的数据,写出


(Ⅱ)某人从灯泡样品中随机地购买了


(Ⅲ)某人从这个批次的灯泡中随机地购买了


