- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 离散型随机变量及其分布列
- 二项分布及其应用
- + 离散型随机变量的均值与方差
- 离散型随机变量的均值
- 常用分布的均值
- 离散型随机变量的方差
- 常用分布的方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某课题组对春晚参加“咻一咻”抢红包活动的同学进行调查,按照使用手机系统不同(安卓系统和
系统) 分别随机抽取
名同学进行问卷调查,发现他们咻得红包总金额数如下表所示∶
(1)如果认为“咻”得红包总金额超过
元为“咻得多”,否则“咻得少”,请判断手机系统与咻得红包总金额的多少是否有关?
(2)要从
名使用安卓系统的同学中随机选出
名参加一项活动,以
表示选中的同学咻得红包总金额超过
元的人数,求随机变量
的分布列及数学期望
.
下面的临界值表供参考:
独立性检验统计量
,其中
.


手机系统 | 一 | 二 | 三 | 四 | 五 |
安卓系统(元) | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |

(2)要从






下面的临界值表供参考:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |


医院到某学校检查高二学生的体质健康情况,随机抽取12名高二学生进行体质健康测试,测试成绩(百分制)如下:65,78,90,86,52,87,72,86,87,98,88,86.根据此年龄段学生体质健康标准,成绩不低于80的为优良.
(Ⅰ)将频率视为概率,根据样本估计总体的思想,在该学校全体高二学生中任选3人进行体质健康测试,求至少有1人成绩是“优良”的概率;
(Ⅱ)从抽取的12人中随机选取3人,记
表示成绩“优良”的人数,求
的分布列和期望.
(Ⅰ)将频率视为概率,根据样本估计总体的思想,在该学校全体高二学生中任选3人进行体质健康测试,求至少有1人成绩是“优良”的概率;
(Ⅱ)从抽取的12人中随机选取3人,记


2015年,中国社科院发布《中国城市竞争力报告》,公布了中国十佳宜居城市和中国十佳最美丽城市,见下表:

(1)记“中国十佳宜居城市”和“中国十佳最美丽城市”得到的平均数分别为
与
,方差分别为
与
,试比较
与
,
与
的大小;(只需写出结论);
(2)某人计划从“中国十佳最美丽城市”中随机选取3个游览,求选到的城市至多有一个是“中国十佳宜居城市”的概率;
(3)旅游部门从“中国十佳宜居城市”和“中国十佳最美丽城市”中各随机选取1个城市进行调研,用X表示选到的城市既是“中国十佳宜居城市”又是“中国十佳最美丽城市”的个数(注:同一城市不重复计数),求X的分布列和数学期望.

(1)记“中国十佳宜居城市”和“中国十佳最美丽城市”得到的平均数分别为








(2)某人计划从“中国十佳最美丽城市”中随机选取3个游览,求选到的城市至多有一个是“中国十佳宜居城市”的概率;
(3)旅游部门从“中国十佳宜居城市”和“中国十佳最美丽城市”中各随机选取1个城市进行调研,用X表示选到的城市既是“中国十佳宜居城市”又是“中国十佳最美丽城市”的个数(注:同一城市不重复计数),求X的分布列和数学期望.
下图为某校语言类专业
名毕业生的综合测评成绩(百分制)分布直方图,已知
分数段的学员数为21人.

(I)求该专业毕业总人数
和
分数段内的人数
;
(II)现欲将
分数段内的6名毕业生分配往甲、乙、丙三所学校,若向学校甲分配两名毕业生,且其中至少有一名男生的概率为
,求
名毕业生中男、女各几人(男、女人数均至少两人).
(III)在(II)的结论下,设随机变量
表示
名毕业生中分配往乙学校的三名学生中男生的人数,求
的分布列和数学期望
.



(I)求该专业毕业总人数



(II)现欲将



(III)在(II)的结论下,设随机变量




空气质量指数(Air Quality Index,简称AQI)是定量描述空气质量状况的指数, 空气质量按照AQI大小分为六级:0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;>300为严重污染.
一环保人士记录去年某地某月10天的AQI的茎叶图如下.

(1)利用该样本估计该地本月空气质量优良(AQI≤100)的天数;(按这个月总共30天计算)
(2)将频率视为概率,从本月中随机抽取3天,记空气质量优良的天数为ξ,求ξ的概率分布列和数学期望.
一环保人士记录去年某地某月10天的AQI的茎叶图如下.

(1)利用该样本估计该地本月空气质量优良(AQI≤100)的天数;(按这个月总共30天计算)
(2)将频率视为概率,从本月中随机抽取3天,记空气质量优良的天数为ξ,求ξ的概率分布列和数学期望.
假定某篮球运动员每次投篮命中率均为
.现有3次投篮机会,并规定连续两次投篮均不中即终止投篮.已知该运动员不放弃任何一次投篮机会,且恰用完3次投篮机会的概率是
.
(1)求
的值;
(2)设该运动员投篮命中次数为
,求
的概率分布及数学期望
.


(1)求

(2)设该运动员投篮命中次数为



在一次考试中,5名同学的数学、物理成绩如下表所示:
(1)根据表中数据,求物理分数
对数学分数
的线性回归方程;
(2)要从4名数学成绩在90分以上的同学中选2名参加一项活动,以
表示选中的同学的物理成绩高于90分的人数,求
的分布列及数学期望
.
学生 | ![]() | ![]() | ![]() | ![]() | ![]() |
数学![]() | 89 | 91 | 93 | 95 | 97 |
物理![]() | 87 | 89 | 89 | 92 | 93 |
(1)根据表中数据,求物理分数


(2)要从4名数学成绩在90分以上的同学中选2名参加一项活动,以


