- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 独立事件的判断
- 相互独立事件与互斥事件
- + 独立事件的乘法公式
- 独立事件的实际应用
- 递推法求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.
(1)求第一次检测出的是次品且第二次检测出的是正品的概率;
(2)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求
.
(1)求第一次检测出的是次品且第二次检测出的是正品的概率;
(2)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求

某校进行文科、理科数学成绩对比,某次考试后,各随机抽取100名同学的数学考试成绩进行统计,其频率分布表如下.
理科 文科
(Ⅰ)根据数学成绩的频率分布表,求理科数学成绩的中位数的估计值;
(Ⅱ)请填写下面的列联表,并根据列联表判断是否有90%的把握认为数学成绩与文理科有关:
(Ⅲ)设文理科数学成绩相互独立,记
表示事件“文科、理科数学成绩都大于等于120分”,估计
的概率.
附:
分组 | 频数 | 频率 | | 分组 | 频数 | 频率 |
![]() | 8 | 0.08 | ![]() | 4 | 0.04 | |
![]() | 17 | 0.17 | ![]() | 18 | 0.18 | |
![]() | 40 | 0.4 | ![]() | 37 | 0.37 | |
![]() | 21 | 0.21 | ![]() | 31 | 0.31 | |
![]() | 12 | 0.12 | ![]() | 7 | 0.07 | |
![]() | 2 | 0.02 | ![]() | 3 | 0.03 | |
总计 | 100 | 1 | 总计 | 100 | 1 |
理科 文科
(Ⅰ)根据数学成绩的频率分布表,求理科数学成绩的中位数的估计值;
(Ⅱ)请填写下面的列联表,并根据列联表判断是否有90%的把握认为数学成绩与文理科有关:
| 数学成绩![]() | 数学成绩![]() | 合计 |
理科 | | | |
文科 | | | |
合计 | | | 200 |
(Ⅲ)设文理科数学成绩相互独立,记


附:

![]() | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
深受广大球迷喜爱的某支欧洲足球队.在对球员的使用上总是进行数据分析,为了考察甲球员对球队的贡献,现作如下数据统计:
(1)求b,c,d,e,n的值,据此能否有97.7%的把握认为球队胜利与甲球员参赛有关;
(2)根据以往的数据统计,乙球员能够胜任前锋、中锋、后卫以及守门员四个位置,且出场率分别为:0.2,0.5,0.2,0.1,当出任前锋、中锋、后卫以及守门员时,球队输球的概率依次为:0.4,0.2,0.6,0.2.则:
当他参加比赛时,求球队某场比赛输球的概率;
当他参加比赛时,在球队输了某场比赛的条件下,求乙球员担当前锋的概率;
附表及公式:
.
| 球队胜 | 球队负 | 总计 |
甲参加 | 22 | b | 30 |
甲未参加 | c | 12 | d |
总计 | 30 | e | n |
(1)求b,c,d,e,n的值,据此能否有97.7%的把握认为球队胜利与甲球员参赛有关;
(2)根据以往的数据统计,乙球员能够胜任前锋、中锋、后卫以及守门员四个位置,且出场率分别为:0.2,0.5,0.2,0.1,当出任前锋、中锋、后卫以及守门员时,球队输球的概率依次为:0.4,0.2,0.6,0.2.则:
当他参加比赛时,求球队某场比赛输球的概率;
当他参加比赛时,在球队输了某场比赛的条件下,求乙球员担当前锋的概率;
附表及公式:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |

近年来随着我国在教育科研上的投入不断加大,科学技术得到迅猛发展,国内企业的国际竞争力得到大幅提升.伴随着国内市场增速放缓,国内有实力企业纷纷进行海外布局,第二轮企业出海潮到来.如在智能手机行业,国产品牌已在赶超国外巨头,某品牌手机公司一直默默拓展海外市场,在海外共设
多个分支机构,需要国内公司外派大量
后、
后中青年员工.该企业为了解这两个年龄层员工是否愿意被外派工作的态度,按分层抽样的方式从
后和
后的员工中随机调查了
位,得到数据如下表:

(1)根据调查的数据,是否有
以上的把握认为“是否愿意被外派与年龄有关”,并说明理由;
(2)该公司举行参观驻海外分支机构的交流体验活动,拟安排
名参与调查的
后、
后员工参加.
后员工中有愿意被外派的
人和不愿意被外派的
人报名参加,从中随机选出
人,记选到愿意被外派的人数为
;
后员工中有愿意被外派的
人和不愿意被外派的
人报名参加,从中随机选出
人,记选到愿意被外派的人数为
,求
的概率.
参考数据:

(参考公式:,其中
).







(1)根据调查的数据,是否有

(2)该公司举行参观驻海外分支机构的交流体验活动,拟安排














参考数据:

(参考公式:,其中

随着电子阅读的普及,传统纸质媒体遭受到了强烈的冲击.某杂志社近9年来的纸质广告收入如下表所示:
根据这9年的数据,对
和
作线性相关性检验,求得样本相关系数的绝对值为0.243;
根据后5年的数据,对
和
作线性相关性检验,求得样本相关系数的绝对值为0.984.
(1)如果要用线性回归方程预测该杂志社2019年的纸质广告收入,现在有两个方案,
方案一:选取这9年数据进行预测,方案二:选取后5年数据进行预测.
从实际生活背景以及线性相关性检验的角度分析,你觉得哪个方案更合适?
附:相关性检验的临界值表:

(2)某购物网站同时销售某本畅销书籍的纸质版本和电子书,据统计,在该网站购买该书籍的大量读者中,只购买电子书的读者比例为
,纸质版本和电子书同时购买的读者比例为
,现用此统计结果作为概率,若从上述读者中随机调查了3位,求购买电子书人数多于只购买纸质版本人数的概率.

根据这9年的数据,对


根据后5年的数据,对


(1)如果要用线性回归方程预测该杂志社2019年的纸质广告收入,现在有两个方案,
方案一:选取这9年数据进行预测,方案二:选取后5年数据进行预测.
从实际生活背景以及线性相关性检验的角度分析,你觉得哪个方案更合适?
附:相关性检验的临界值表:

(2)某购物网站同时销售某本畅销书籍的纸质版本和电子书,据统计,在该网站购买该书籍的大量读者中,只购买电子书的读者比例为


某高中学校对全体学生进行体育达标测试,每人测试A,B两个项目,每个项目满分均为60分.从全体学生中随机抽取了100人,分别统计他们A,B两个项目的测试成绩,得到A项目测试成绩的频率分布直方图和B项目测试成绩的频数分布表如下:
B项目测试成绩频数分布表
将学生的成绩划分为三个等级,如下表:
(1)在抽取的100人中,求A项目等级为优秀的人数;
(2)已知A项目等级为优秀的学生中女生有14人,A项目等级为一般或良好的学生中女生有34人,试完成下列2×2列联表,并分析是否有95%以上的把握认为“A项目等级为优秀”与性别有关?
(3)将样本的概率作为总体的概率,并假设A项目和B项目测试成绩互不影响,现从该校学生中随机抽取1人进行调查,试估计其A项目等级比B项目等级高的概率.
参考数据:
参考公式K2=
,其中n=a+b+c+d.

B项目测试成绩频数分布表
分数区间 | 频数 |
[0,10) | 2 |
[10,20) | 3 |
[20,30) | 5 |
[30,40) | 15 |
[40,50) | 40 |
[50,60] | 35 |
将学生的成绩划分为三个等级,如下表:
分数 | [0,30) | [30,50) | [50,60] |
等级 | 一般 | 良好 | 优秀 |
(1)在抽取的100人中,求A项目等级为优秀的人数;
(2)已知A项目等级为优秀的学生中女生有14人,A项目等级为一般或良好的学生中女生有34人,试完成下列2×2列联表,并分析是否有95%以上的把握认为“A项目等级为优秀”与性别有关?
优秀 | 一般或良好 | 总计 |
男生 | | |
女生 | | |
总计 | | |
(3)将样本的概率作为总体的概率,并假设A项目和B项目测试成绩互不影响,现从该校学生中随机抽取1人进行调查,试估计其A项目等级比B项目等级高的概率.
参考数据:
P(K2≥k0) | 0.10 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
参考公式K2=

哈师大附中高三年级统计了甲、乙两个班级一模的数学分数(满分
分),现有甲、乙两班本次考试数学的分数如下列茎叶图所示:

(1)根据茎叶图求甲、乙两班同学成绩的中位数,并将乙班同学的成绩的频率分布直方图填充完整;

(2)根据茎叶图比较在一模考试中,甲、乙两班同学数学成绩的平均水平和分数的分散程度(不要求计算出具体值,给出结论即可);
(3)若规定分数在
的成绩为良好,分数在
的成绩为优秀,现从甲、乙两班成绩为优秀的同学中,按照各班成绩为优秀的同学人数占两班总的优秀人数的比例分层抽样,共选出
位同学参加数学提优培训,求这
位同学中恰含甲、乙两班所有
分以上的同学的概率.


(1)根据茎叶图求甲、乙两班同学成绩的中位数,并将乙班同学的成绩的频率分布直方图填充完整;

(2)根据茎叶图比较在一模考试中,甲、乙两班同学数学成绩的平均水平和分数的分散程度(不要求计算出具体值,给出结论即可);
(3)若规定分数在





某灯具厂分别在南方和北方地区各建一个工厂,生产同一种灯具(售价相同),为了了解北方与南方这两个工厂所生产得灯具质量状况,分别从这两个工厂个抽查了25件灯具进行测试,结果如下:

(Ⅰ)根据频率分布直方图,请分别求出北方、南方两个工厂灯具的平均使用寿命;
(Ⅱ)某学校欲采购灯具,同时试用了南北两工厂的灯具各两件,试用500小时后,若北方工厂生产的灯具还能正常使用的数量比南方工厂多,该学校就准备采购北方工厂的灯具,否则就采购南方工厂的灯具,试估计该学校采购北方工厂的灯具的概率.(视频率为概率)

(Ⅰ)根据频率分布直方图,请分别求出北方、南方两个工厂灯具的平均使用寿命;
(Ⅱ)某学校欲采购灯具,同时试用了南北两工厂的灯具各两件,试用500小时后,若北方工厂生产的灯具还能正常使用的数量比南方工厂多,该学校就准备采购北方工厂的灯具,否则就采购南方工厂的灯具,试估计该学校采购北方工厂的灯具的概率.(视频率为概率)
某校教务处要对高三上学期期中数学试卷进行调研,考察试卷中某道填空题的得分情况.已知该题有两空,第一空答对得
分,答错或不答得
分;第二空答对得
分,答错或不答得
分.第一空答对与否与第二空答对与否是相互独立的.从该校
份试卷中随机抽取
份试卷,其中该题的得分组成容量为
的样本,统计结果如下表:
(1)求样本试卷中该题的平均分,并据此估计该校高三学生该题的平均分;
(2)该校的一名高三学生因故未参加考试,如果这名学生参加考试,以样本中各种得分情况的频率(精确到0.1)作为该同学相应的各种得分情况的概率,试求该同学这道题得分
的数学期望.







第一空得分情况 | | 第二空得分情况 | ||||
得分 | 0 | 3 | | 得分 | 0 | 2 |
人数 | 198 | 802 | | 人数 | 698 | 302 |
(1)求样本试卷中该题的平均分,并据此估计该校高三学生该题的平均分;
(2)该校的一名高三学生因故未参加考试,如果这名学生参加考试,以样本中各种得分情况的频率(精确到0.1)作为该同学相应的各种得分情况的概率,试求该同学这道题得分

质检部门对某工厂甲、乙两个车间生产的12个零件质量进行检测.甲、乙两个车间的零件质量(单位:克)分布的茎叶图如图所示.零件质量不超过20克的为合格.

(1)从甲、乙两车间分别随机抽取2个零件,求甲车间至少一个零件合格且乙车间至少一个零件合格的概率;
(2)质检部门从甲车间8个零件中随机抽取4件进行检测,若至少2件合格,检测即可通过,若至少3 件合格,检测即为良好,求甲车间在这次检测通过的条件下,获得检测良好的概率;
(3)若从甲、乙两车间12个零件中随机抽取2个零件,用
表示乙车间的零件个数,求
的分布列与数学期望.

(1)从甲、乙两车间分别随机抽取2个零件,求甲车间至少一个零件合格且乙车间至少一个零件合格的概率;
(2)质检部门从甲车间8个零件中随机抽取4件进行检测,若至少2件合格,检测即可通过,若至少3 件合格,检测即为良好,求甲车间在这次检测通过的条件下,获得检测良好的概率;
(3)若从甲、乙两车间12个零件中随机抽取2个零件,用

