刷题首页
题库
高中数学
题干
某校进行文科、理科数学成绩对比,某次考试后,各随机抽取100名同学的数学考试成绩进行统计,其频率分布表如下.
分组
频数
频率
分组
频数
频率
8
0.08
4
0.04
17
0.17
18
0.18
40
0.4
37
0.37
21
0.21
31
0.31
12
0.12
7
0.07
2
0.02
3
0.03
总计
100
1
总计
100
1
理科 文科
(Ⅰ)根据数学成绩的频率分布表,求理科数学成绩的中位数的估计值;
(Ⅱ)请填写下面的列联表,并根据列联表判断是否有90%的把握认为数学成绩与文理科有关:
数学成绩
分
数学成绩
分
合计
理科
文科
合计
200
(Ⅲ)设文理科数学成绩相互独立,记
表示事件“文科、理科数学成绩都大于等于120分”,估计
的概率.
附:
0.100
0.050
0.025
0.010
0.001
2.706
3.841
5.024
6.635
10.828
上一题
下一题
0.99难度 解答题 更新时间:2018-04-29 03:37:32
答案(点此获取答案解析)
同类题1
某调查机构对某校学生做了一个是否同意生“二孩”抽样调查,该调查机构从该校随机抽查了100名不同性别的学生,调查统计他们是同意父母生“二孩”还是反对父母生“二孩”,现已得知100人中同意父母生“二孩”占60%,统计情况如下表:
同意
不同意
合计
男生
a
5
女生
40
d
合计
100
(1)求
a
,
d
的值;
(2)根据以上数据,能否有97.5%的把握认为是否同意父母生“二孩”与性别有关?请说明理由;
附:
0.15
0.100
0.050
0.025
0.010
2.072
2.706
3.841
5.024
6.635
同类题2
甲乙两个学校高三年级分别有1200人,1000人,为了了解两个学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两个学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:
分组
70,80)
80,90)
90,100)
100,110)
频数
3
4
8
15
分组
110,120)
120,130)
130,140)
140,150
频数
15
x
3
2
甲校:
分组
70,80)
80,90)
90,100)
100,110)
频数
1
2
8
9
分组
110,120)
120,130)
130,140)
140,150
频数
10
10
y
3
乙校:
(Ⅰ)计算
的值;
(Ⅱ)若规定考试成绩在120,150内为优秀,请分别估计两个学校数学成绩的优秀率;
甲校
乙校
总计
优秀
非优秀
总计
(Ⅲ)由以上统计数据填写右面
列联表,并判断是否有
的把握认为两个学校的数学成绩有差异.
参考数据与公式:
由列联表中数据计算
临界值表
同类题3
某校为了推动数学教学方法的改革,学校将高一年级部分生源情况基本相同的学生分成甲、乙两个班,每班各
人,甲班按原有模式教学,乙班实施教学方法改革,经过一年的教学,将甲、乙两个班学生一年来的数学成绩取整数,绘制成如下茎叶图,规定不低于
分(百分制)为优秀,甲班同学成绩的中位数为
.
(1)求
的值和乙班同学成绩的众数;
(2)完成表格,若有
以上的把握认为“数学成绩优秀与教学改革有关”的话,那么学校将扩大教学改革面,请问学校是否要扩大教学改革面?说明理由.
甲班
乙班
合计
优秀人数
不优秀人数
合计
附:
,其中
.
0.15
0.10
0.05
0.025
0.010
0.005
0.001
2.072
2.706
3.841
5.024
6.635
7.879
10.828
同类题4
“开门大吉”是中央电视台推出的娱乐节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示.
(1) 完成下列2×2列联表(见答题纸);
(2)判断是否有90%的把握认为猜对歌曲名称与否和年龄有关;说明你的理由.(下面的临界值表供参考)
0.10
0.05
0.010
0.005
2.706
3.841
6.635
7.879
(参考公式:
,
)
同类题5
4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下图是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为“读书谜”,低于60分钟的学生称为“非读书谜”.
(1)求
的值并估计全校3000名学生中读书谜大概有多少名?(将频率视为概率)
(2)根据已知条件完成下面
的列联表,并据此判断是否有
的把握认为“读书谜”与性别有关?
非读书迷
读书迷
合计
男
40
女
25
合计
附:
,
.
0.100
0.050
0.025
0.010
0.001
2.706
3.841
5.024
6.635
10.828
相关知识点
计数原理与概率统计
统计案例
独立性检验
列联表
完善列联表
独立事件的乘法公式