- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 独立事件的判断
- 相互独立事件与互斥事件
- + 独立事件的乘法公式
- 独立事件的实际应用
- 递推法求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:
)某频率分布直方图如下:
(1)设两种养殖方法的箱产量相互独立,记
表示事件:“旧养殖法的箱产量低于
,新养殖法的箱产量不低于
”,估计
的概率;
(2)填写下面列联表,并根据列联表判断是否有
的把握认为箱产量与养殖方法有关:
(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01)
附:



(1)设两种养殖方法的箱产量相互独立,记




(2)填写下面列联表,并根据列联表判断是否有

| 箱产量![]() | 箱产量![]() |
旧养殖法 | | |
新养殖法 | | |
(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01)
附:

![]() | 0.050 | 0.010 | 0.001 |
![]() | 3.841 | 6.635 | 10.828 |
甲、乙、丙三个口袋内部分别装有
个只有颜色不相同的球,并且每个口袋内的
个球均有
个红球,
个黑球,
个无色透明的球,甲、乙、丙三个口袋中依次随机各摸出
个球.
(Ⅰ)求恰好摸出红球、黑球和无色球各
个的概率;
(Ⅱ)求摸出的
个球中含有有色球个数
的概率分布列和数学期望.






(Ⅰ)求恰好摸出红球、黑球和无色球各

(Ⅱ)求摸出的


中国乒乓球队为了备战2019直通布达佩斯世乒赛,在深圳集训并进行队内选拔.选手
与
三位选手分别进行一场对抗赛,按以往多次比赛的统计,选手
获胜的概率分别为
,且各场比赛互不影响.
(1)若选手至少获胜两场的概率大于
,则该选手入选世乒赛最终名单,否则不予入选,问选手
是否会入选;
(2)求选手
获胜场数
的分布列和数学期望.




(1)若选手至少获胜两场的概率大于


(2)求选手


某中学的甲、乙、丙三名同学参加高校自主招生考试,每位同学彼此独立的从
四所高校中选2所.
(1)求甲、乙、丙三名同学都选
高校的概率;
(2)若甲必选
,记
为甲、乙、丙三名同学中选
校的人数,求随机变量
的分布列及数学期望.

(1)求甲、乙、丙三名同学都选

(2)若甲必选




科目二,又称小路考,是机动车驾驶证考核的一部分,是场地驾驶技能考试科目的简称.假设甲每次通过科目二的概率均为
,且每次考试相互独立,则甲第3次考试才通过科目二的概率为( )

A.![]() | B.![]() | C.![]() | D.![]() |
甲骑自行车从
地到
地,途中要经过
个十字路口,已知甲在每个十字路口遇到红灯的概率都是
,且在每个路口是否遇到红灯相互独立,那么甲在前两个十字路口都没有遇到红灯,直到第三个路口才首次遇到红灯的概率是( )




A.![]() | B.![]() | C.![]() | D.![]() |
一款击鼓小游戏的规则如下:每轮游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每轮游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为
,且各次击鼓是否出现音乐相互独立.
(1)玩三轮游戏,至少有一轮出现音乐的概率是多少?
(2)设每轮游戏获得的分数为
,求
的分布列及数学期望.

(1)玩三轮游戏,至少有一轮出现音乐的概率是多少?
(2)设每轮游戏获得的分数为


在体育选修课排球模块基本功
发球
测试中,计分规则如下
满分为10分
:①每人可发球7次,每成功一次记1分;②若连续两次发球成功加
分,连续三次发球成功加1分,连续四次发球成功加
分,以此类推,
,连续七次发球成功加3分
假设某同学每次发球成功的概率为
,且各次发球之间相互独立,则该同学在测试中恰好得5分的概率是( )









A.![]() | B.![]() | C.![]() | D.![]() |
甲、乙、丙、丁4个人进行网球比赛,首先甲、乙一组,丙、丁一组进行比赛,两组的胜者进入决赛,决赛的胜者为冠军、败者为亚军.4个人相互比赛的胜率如右表所示,表中的数字表示所在行选手击败其所在列选手的概率.
那么甲得冠军且丙得亚军的概率是( )
| 甲 | 乙 | 丙 | 丁 |
甲 | ![]() | ![]() | ![]() | ![]() |
乙 | ![]() | ![]() | ![]() | ![]() |
丙 | ![]() | ![]() | ![]() | ![]() |
丁 | ![]() | ![]() | ![]() | ![]() |
那么甲得冠军且丙得亚军的概率是( )
A.![]() |
B.![]() |
C.![]() |
D.![]() |
某工厂生产一种汽车的元件,该元件是经过
、
、
三道工序加工而成的,
、
、
三道工序加工的元件合格率分别为
、
、
.已知每道工序的加工都相互独立,三道工序加工都合格的元件为一等品;恰有两道工序加工合格的元件为二等品;其它的为废品,不进入市场.
(Ⅰ)生产一个元件,求该元件为二等品的概率;
(Ⅱ)若从该工厂生产的这种元件中任意取出3个元件进行检测,求至少有2个元件是一等品的概率.









(Ⅰ)生产一个元件,求该元件为二等品的概率;
(Ⅱ)若从该工厂生产的这种元件中任意取出3个元件进行检测,求至少有2个元件是一等品的概率.