- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 独立事件的判断
- 相互独立事件与互斥事件
- + 独立事件的乘法公式
- 独立事件的实际应用
- 递推法求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某射击游戏规定每击中目标一次得20分,游客甲每次击中目标的概率均为
,则他射5次得60分且恰有一次两连中的概率为_______ .(以最简分数作答)

有甲、乙两种味道和颜色都极为相似的名酒各4杯.从中挑出4杯称为一次试验,如果能将甲种酒全部挑出来,算作试验成功一次.某人随机地去挑,求:
(1)试验一次就成功的概率是多少?
(2)恰好在第三次试验成功的概率是多少?
(3)当试验成功的期望值是2时,需要进行多少次相互独立试验?
(1)试验一次就成功的概率是多少?
(2)恰好在第三次试验成功的概率是多少?
(3)当试验成功的期望值是2时,需要进行多少次相互独立试验?
甲、乙、丙3位学生用互联网学习数学,每天上课后独立完成6道自我检测题,甲答题及格的概率为
,乙答题及格的概率为
,丙答题及格的概率为
,3人各答一次,则3人中只有1人答题及格的概率为 ( )



A.![]() | B.![]() | C.![]() | D.以上全不对 |
某校选拔若干名学生组建数学奥林匹克集训队,要求选拔过程分前后两次进行,当第一次选拔合格后方可进入第二次选拔,两次选拔过程相互独立.根据甲、乙、丙三人现有的水平,第一次选拔,甲、乙、丙三人合格的概率依次为
,
,
.第二次选拔,甲、乙、丙三人合格的概率依次为
,
,
.
(1)求第一次选拔后甲、乙两人中只有甲合格的概率;
(2)分别求出甲、乙、丙三人经过前后两次选拔后合格的概率;
(3)求甲、乙、丙经过前后两次选拔后,恰有一人合格的概率.






(1)求第一次选拔后甲、乙两人中只有甲合格的概率;
(2)分别求出甲、乙、丙三人经过前后两次选拔后合格的概率;
(3)求甲、乙、丙经过前后两次选拔后,恰有一人合格的概率.
桌面上有两颗均匀的骰子(
个面上分别标有数字
).将桌面上骰子全部抛掷在桌面上,然后拿掉那些朝上点数为奇数的骰子,如果桌面上没有了骰子,停止抛掷,如果桌面上还有骰子,继续抛掷桌面上的剩余骰子. 记抛掷两次之内(含两次)去掉的骰子的颗数为
.
(Ⅰ)求
;
(Ⅱ)求
的分布列及期望
.



(Ⅰ)求

(Ⅱ)求


某次月考数学第Ⅰ卷共有8道选择题,每道选择题有4个选项,其中只有一个是正确的;评分标准为:“每题只有一个选项是正确的,选对得5分,不选或选错得0分.”某考生每道题都给出一个答案,已确定有5道题的答案是正确的,而其余3道题中,有一道题可判断出两个选项是错误的,有一道题可以判断出一个选项是错误的,还有一道题因不了解题意而乱猜,试求该考生:
(Ⅰ)得40分的概率;
(Ⅱ)得多少分的可能性最大?
(Ⅲ)所得分数X的数学期望.
(Ⅰ)得40分的概率;
(Ⅱ)得多少分的可能性最大?
(Ⅲ)所得分数X的数学期望.
某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进行第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品的合格率依次为
,
,
.经过第二次烧制后,甲、乙、丙三件产品的合格率均为
.
(Ⅰ)求第一次烧制后恰有一件产品合格的概率;
(Ⅱ)求经过前后两次烧制后三件产品均合格的概率.




(Ⅰ)求第一次烧制后恰有一件产品合格的概率;
(Ⅱ)求经过前后两次烧制后三件产品均合格的概率.
因冰雪灾害,某柑橘基地果林严重收损,为此有关专家提出一种拯救果树的方案,该方案需分两年实施且相互独立.该方案预计第一年可以使柑橘产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.2、0.4、0.4;第二年可以使柑橘产量为第一年的1.5倍、1.25倍、1.0倍的概率分别是0.3、0.3、0.4,求两年后柑橘产量恰好达到灾前产量的概率_____________
某机械零件加工由
道工序组成,第
道工序的废品率为
,第
道工序的废品率为
,假定这两道工序出废品是彼此无关的,那么产品的废品率是____________.





甲乙两人进行射击训练,每人射击两次,若甲乙两人一次射击命中目标的概率分别为
和
,且每次射击是否命中相互之间没有影响.
(I)求两人恰好各命中一次的概率;
(II)求两人击中目标的总次数
的分布列和期望.


(I)求两人恰好各命中一次的概率;
(II)求两人击中目标的总次数
