- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 独立事件的判断
- 相互独立事件与互斥事件
- + 独立事件的乘法公式
- 独立事件的实际应用
- 递推法求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某射手A第n次射击时击中靶心的概率为

(1)求A射击5次,直到第5次才击中靶心的概率P;
(2)若A共射击3次,求恰好击中1次靶心的概率。
假定某射手每次射击命中的概率为



求:(1)目标被击中的概率;
(2)

(3)均值

在一个有奖问答的电视节目中,参赛选手顺序回答A1、A2、A3三个问题,答对各个问题所获奖金(单位:元)对应如下表:
当一个问题回答正确后,选手可选择继续回答下一个问题,也可选择放弃.若选择放弃,选手将获得答对问题的累计奖金,答题结束;若有任何一个问题回答错误,则全部奖金归零,答题结束.设一名选手能正确回答A1、A2、A3的概率分别为
,正确回答一个问题后,选择继续回答下一个问题的概率均为
,且各个问题回答正确与否互不影响.
(Ⅰ)按照答题规则,求该选手A1回答正确但所得奖金为零的概率;
(Ⅱ)设该选手所获奖金总数为ξ,求ξ的分布列与数学期望.
A1 | A2 | A3 |
1000 | 2000 | 3000 |
当一个问题回答正确后,选手可选择继续回答下一个问题,也可选择放弃.若选择放弃,选手将获得答对问题的累计奖金,答题结束;若有任何一个问题回答错误,则全部奖金归零,答题结束.设一名选手能正确回答A1、A2、A3的概率分别为


(Ⅰ)按照答题规则,求该选手A1回答正确但所得奖金为零的概率;
(Ⅱ)设该选手所获奖金总数为ξ,求ξ的分布列与数学期望.
抛掷一枚硬币,出现正面向上记1分,出现反面向上记2分,若一共抛出硬币4次,且每一次抛掷的结果相互之间没有影响,则得6分的概率为( )
A.![]() | B.![]() | C.![]() | D.![]() |
NBA篮球总决赛采用7场4胜制,先取胜4场的球队夺冠.若甲、乙两队每场比赛获胜的几率相等,则它们打完5场以后仍不能结束比赛的概率为 ( )
A.![]() | B.![]() | C.![]() | D.![]() |
(本小题满分12分)
为了评估天气对大运会的影响,制定相应预案,深圳市气象局通过对最近50多年的气象数据资料的统计分析,发现8月份是本市雷电天气高峰期,在31天中平均发生雷电14.57天如图.如果用频率作为概率的估计值,并假定每一天发生雷电的概率均相等,且相互独立.

(1)求在大运会开幕(8月12日)后的前3天比赛中,恰好有2天发生雷电天气的概率(精确到0.01);
(2)设大运会期间(8月12日至23日,共12天),发生雷电天气的天数为
,求
的数学期望和方差.
为了评估天气对大运会的影响,制定相应预案,深圳市气象局通过对最近50多年的气象数据资料的统计分析,发现8月份是本市雷电天气高峰期,在31天中平均发生雷电14.57天如图.如果用频率作为概率的估计值,并假定每一天发生雷电的概率均相等,且相互独立.

(1)求在大运会开幕(8月12日)后的前3天比赛中,恰好有2天发生雷电天气的概率(精确到0.01);
(2)设大运会期间(8月12日至23日,共12天),发生雷电天气的天数为


哈尔滨市第六中学为绿化环境,移栽甲乙两种大树各
株,已知甲树种每株成活率为
,乙树种每株成活率为
,各株大树是否成活互不影响,求
(1)两种大树各成活一株的概率;
(2)设两种大树共成活的株数为
,求
的分布列和期望;



(1)两种大树各成活一株的概率;
(2)设两种大树共成活的株数为


一袋中装有5个白球,3个红球,现从袋中往外取球,每次取出一个,取出后记下球的颜色,然后放回,直到红球出现2次停止,用X表示取球的次数,则
___________

红队队员甲、乙、丙与蓝队队员A、B、C进行围棋比赛,甲对A,乙对B,丙对C各一盘,已知甲胜A,乙胜B,丙胜C的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立.
(I)求红队至少两名队员获胜的概率;
(II)用
表示红队队员获胜的总盘数,求
的分布列和数学期望
.
(I)求红队至少两名队员获胜的概率;
(II)用



在某社区举办的“
亚运知识有奖问答比赛”中,甲、乙、丙三人同时回答一道有关亚运知识的问题,已知甲回答这道题对的概率为
,甲、丙两人都回答错的概率是
,乙、丙两人都回答对的概率是
;
(1)求乙、丙两人各自回答这道题对的概率;
(2)用
表示回答该题对的人数,求
的分布列和




(1)求乙、丙两人各自回答这道题对的概率;
(2)用


