- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条件概率
- + 事件的独立性
- 独立事件的判断
- 相互独立事件与互斥事件
- 独立事件的乘法公式
- 独立事件的实际应用
- 递推法求概率
- 独立重复试验
- 二项分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在一次数学考试中,共有10道选择题,每题均有四个选项,其中有且只有一个选项是正确的,评分标准规定:“每道题只选一个选项,答对得5分,不答或答错得零分”.某考生已确定有6道题是正确的,其余题目中:有两道题可判断两个选项是错误的,有一道可判断一个选项是错误的,还有一道因不理解题意只好乱猜,请求出该考生:
(Ⅰ)得50分的概率;www..com
(Ⅱ)设该考生所得分数为
,求
的数学期望.
(Ⅰ)得50分的概率;www..com
(Ⅱ)设该考生所得分数为


在某校高三学生的数学校本课程选课过程中,规定每位同学只能选一个科目.已知某班第一小组与第二小组各有六位同学选择科目甲或科目乙,情况如下表:
现从第一小组、第二小组中各任选2人分析选课情况.
(1)求选出的4 人均选科目乙的概率;
(2)设
为选出的4个人中选科目甲的人数,求
的分布列和数学期望.
| 科目甲 | 科目乙 | 总计 |
第一小组 | 1 | 5 | 6 |
第二小组 | 2 | 4 | 6 |
总计 | 3 | 9 | 12 |
现从第一小组、第二小组中各任选2人分析选课情况.
(1)求选出的4 人均选科目乙的概率;
(2)设


“天宫一号”的顺利升空标志着我国火箭运载的技术日趋完善.据悉,担任“天宫一号”发射任务的是长征二号FT1火箭.为了确保发射万无一失,科学家对长征二号FT1运载火箭进行了 170余项技术状态更改,增加了某项新技术.该项新技术要进入试用阶段必须对其中四项不同指标甲、乙、丙、丁进行通过量化检测. 假设该项新技术的指标甲、乙、丙、丁独立通过检测合格的概率分别为
,指标甲、乙、丙、丁被检测合格分别记4分、3分、2分、1分,若某项指标不合格,则该项指标记0分,各项指标检测结果互不影响.
(I )求该项新技术量化得分为6分的概率;
(II)求该项新技术的四个指标中恰有三个指标被检测合格化得分不低于7分的概率

(I )求该项新技术量化得分为6分的概率;
(II)求该项新技术的四个指标中恰有三个指标被检测合格化得分不低于7分的概率
设进入某商场的每一位顾客购买甲种商品的概率0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.
(1)求进入商场的一位顾客购买甲、乙两种商品中的一种的概率;
(2) 求进入商场的一位顾客至少购买甲、乙两种商品中的一种的概率.
(1)求进入商场的一位顾客购买甲、乙两种商品中的一种的概率;
(2) 求进入商场的一位顾客至少购买甲、乙两种商品中的一种的概率.
(本小题满分13分)某单位有三辆汽车参加某种事故保险,单位年初向保险公司缴纳每辆900元的保险金.对在一年内发生此种事故的每辆汽车,单位获9000元的赔偿(假设每辆车最多只赔偿一次)。设这三辆车在一年内发生此种事故的概率分别为
且各车是否发生事故相互独立,求一年内该单位在此保险中:
(1)获赔的概率;(4分)
(2)获赔金额
的分别列与期望。(9分)

(1)获赔的概率;(4分)
(2)获赔金额

(本小题满分12分)
某单位组织职工参加了旨在调查职工健康状况的测试.该测试包括心理健康测试和身体健康两个项目,每个项目的测试结果为A、B、C、D、E五个等级.假设该单位50位职工全部参加了测试,测试结果如下:x表示心理健康测试结果,y表示身体健康测试结果.
(I)求a+b的值;
(II)如果在该单位随机找一位职工谈话,求找到的职工在这次测试中心理健康为D等且身体健康为C等的概率;
(III)若“职工的心理健康为D等”与“职工的身体健康为B等”是相互独立事件,求a、b的值.
某单位组织职工参加了旨在调查职工健康状况的测试.该测试包括心理健康测试和身体健康两个项目,每个项目的测试结果为A、B、C、D、E五个等级.假设该单位50位职工全部参加了测试,测试结果如下:x表示心理健康测试结果,y表示身体健康测试结果.
![]() 人数 x | 身体健康 | |||||
A | B | C | D | E | ||
心理健康 | A | 1 | 3 | 1 | 0 | 1 |
B | 1 | 0 | 7 | 5 | 1 | |
C | 2 | 1 | 0 | 9 | 3 | |
D | 1 | b | 6 | 0 | a | |
E | 0 | 0 | 1 | 1 | 3 |
(I)求a+b的值;
(II)如果在该单位随机找一位职工谈话,求找到的职工在这次测试中心理健康为D等且身体健康为C等的概率;
(III)若“职工的心理健康为D等”与“职工的身体健康为B等”是相互独立事件,求a、b的值.
设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为
各人是否需使用设备相互独立.
(1)求同一工作日至少3人需使用设备的概率;
(2)X表示同一工作日需使用设备的人数,求X的数学期望.

(1)求同一工作日至少3人需使用设备的概率;
(2)X表示同一工作日需使用设备的人数,求X的数学期望.
某大学毕业生响应国家号召,到某村参加村委会主任应聘考核.考核依次分为笔试、面试.试用共三轮进行,规定只有通过前一轮考核才能进入下一轮考核,否则将被淘汰,三轮考核都通过才能被正式录用.设该大学毕业生通过三轮考核的概率分别为
,且各轮考核通过与否相互独立.
(Ⅰ)求该大学毕业生未进入第三轮考核的概率;
(Ⅱ)设该大学毕业生在应聘考核中考核次数为
,求
的数学期望和方差.

(Ⅰ)求该大学毕业生未进入第三轮考核的概率;
(Ⅱ)设该大学毕业生在应聘考核中考核次数为


高三第一学期期末四校联考数学第I卷中共有8道选择题,每道选择题有4个选项,其中只有一个是正确的;评分标准规定:“每题只选一项,答对得5分,不答或答错得0分.”某考生每道题都给出一个答案,已确定有5道题的答案是正确的,而其余选择题中,有1道题可判断出两个选项是错误的,有一道可以判断出一个选项是错误的,还有一道因不了解题意只能乱猜,试求出该考生:
(1)得40分的概率
(2)得多少分的可能性最大?
(3)所得分数
的数学期望
(1)得40分的概率
(2)得多少分的可能性最大?
(3)所得分数
