- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条件概率
- + 事件的独立性
- 独立事件的判断
- 相互独立事件与互斥事件
- 独立事件的乘法公式
- 独立事件的实际应用
- 递推法求概率
- 独立重复试验
- 二项分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某大街在甲、乙、丙三个地方设有红灯、绿灯交通信号,汽车在甲、乙、丙三个地方通过(即通过绿灯)的概率分别是
、
、
,对于该大街上行驶的汽车,求:
(1)在三个地方都不停车的概率;
(2)在三个地方都停车的概率;
(3)只在一个地方停车的概率.



(1)在三个地方都不停车的概率;
(2)在三个地方都停车的概率;
(3)只在一个地方停车的概率.
某条街道上有4个安置的红绿灯路口,各路口出现什么颜色的灯相互独立,红、绿两种 颜色的灯显示的时间之比为1∶2,今有一汽车沿该街道行驶,若以X表示该汽车首次遇到红灯之前已通过路口的个数,求X的分布列,并求该汽车在这条街道上至少遇到一次红灯的概率.
在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次.某同学在A处的命中率0.25,在B处的命中率为0.8,该同学选择先在A处投一球,以后都在B处投,用
表示该同学投篮训练结束后所得的总分.
(1)求该同学投篮3次的概率;
(2)求随机变量
的数学期望
.

(1)求该同学投篮3次的概率;
(2)求随机变量


某电视台举行电视奥运知识大奖赛,比赛分初赛和决赛两部分.为了增加节目的趣味性,
初赛采用选手选一题答一题的方式进行,每位选手最多有
次选题答题的机会,选手累计答对
题或答错
题即终止其初赛的比赛,答对
题者直接进入决赛,答错
题者则被淘汰.已知选手甲答题的正确率为
.
(1) 求选手甲可进入决赛的概率;
(2) 设选手甲在初赛中答题的个数为
,试写出
的分布列,并求
的数学期望.
初赛采用选手选一题答一题的方式进行,每位选手最多有






(1) 求选手甲可进入决赛的概率;
(2) 设选手甲在初赛中答题的个数为



9粒种子分种在甲、乙、丙3个坑内,每坑3粒,每粒种子发芽的概率为0.5.若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种.
(1)求甲坑不需要补种的概率;
(2)求3个坑中恰有1个坑不需要补种的概率;
(3)求有坑需要补种的概率.(精确到0.001)
(1)求甲坑不需要补种的概率;
(2)求3个坑中恰有1个坑不需要补种的概率;
(3)求有坑需要补种的概率.(精确到0.001)
有
位同学参加某项选拔测试,每位同学通过测试的概率都是
,假设每位同学能否通过测试是相互独立,则至少有一位同学通过测试的概率是( )


A.![]() | B.![]() | C.![]() | D.![]() |
某学校在一次庆祝活动中组织了一场知识竞赛,该竞赛设有三轮,前两轮各有四题,只有答正确其中三题,才能进入下一轮,否则将被淘汰.最后第三轮有三题,这三题都答对的同学获得奖金
元.某同学参与了此次知识竞赛,且该同学前两轮每题答正确的概率均为
,第三轮每题答正确的概率
,各题正确与否互不影响.在竞赛过程中,该同学不放弃所有机会.
(1)求该同学能进入第三轮的概率;
(2)求该同学获得
元奖金的概率.



(1)求该同学能进入第三轮的概率;
(2)求该同学获得

有一道竞赛题,甲解出它的概率为
,乙解出它的概率为
,丙解出它的概率为
,则甲、乙、丙三人独立解答此题,只有1人解出的概率是( )



A.![]() | B.![]() | C.![]() | D.1 |