余江人热情好客,凡逢喜事,一定要摆上酒宴,请亲朋好友、同事高邻来助兴庆贺.欢度佳节,迎亲嫁女,乔迁新居,学业有成,仕途风顺,添丁加口,朋友相聚,都要以酒示意,借酒表达内心的欢喜.而凡有酒宴,一定要划拳,划拳是余江酒文化的特色.余江人划拳注重礼节,形式多样;讲究规矩,蕴含着浓厚的传统文化和淳朴的民俗特色.在礼节上,讲究“尊老尚贤敬远客”一般是东道主自己或委托桌上一位酒量好的划拳高手来“做关”,——就是依次陪桌上会划拳的划一年数十二拳(也有半年数六拳).十二拳之后晚辈还要敬长辈一杯酒.
再一次家族宴上,小明先陪他的叔叔猜拳12下,最后他还要敬他叔叔一杯,规则如下:前两拳只有小明猜叔赢叔叔,叔叔才会喝下这杯敬酒,且小明也要陪喝,如果第一拳小明没猜到,则小明喝下第一杯酒,继续猜第二拳,没猜到继续喝第二杯,但第三拳不管谁赢双方同饮自己杯中酒,假设小明每拳赢叔叔的概率为,问在敬酒这环节小明喝酒三杯的概率是多少(   )
(猜拳只是一种娱乐,喝酒千万不要过量!)
A.B.C.D.
当前题号:1 | 题型:单选题 | 难度:0.99
有两枚均匀的硬币和一枚不均匀的硬币,其中不均匀的硬币抛掷后出现正面的概率为,小华先抛掷这三枚硬币,然后小红再抛掷这三枚硬币.
(1)求小华抛得一个正面两个反面且小红抛得两个正面一个反面的概率;
(2)若用表示小华抛得正面的个数,求的分布列和数学期望.
当前题号:2 | 题型:解答题 | 难度:0.99
集成电路E由3个不同的电子元件组成,现由于元件老化,3个电子元件能正常工作的概率分别降为,且每个电子元件能否正常工作相互独立。若3个电子元件中至少有2个正常工作,则E能正常工作,否则就需要维修,且维修集成电路E所需要费用为100元。
(Ⅰ)求集成电路E需要维修的概率;
(Ⅱ)若某电子设备共由2个集成电路E组成,设X为该电子设备需要维修集成电路所需费用。求X的分布列和均值.
当前题号:3 | 题型:解答题 | 难度:0.99
某人提出一个问题,甲先答,答对的概率为0.4,如果甲答错,由乙答,答对的概率为0.5,则问题由乙答对的概率为(    )
A.0.2B.0.8C.0.4D.0.3
当前题号:4 | 题型:单选题 | 难度:0.99
某超市进行促销活动,规定消费者消费每满100元可抽奖一次,抽奖规则:从装有三种只有颜色不同的球的袋中随机摸出一球,记下颜色后放回,依颜色分为一、二、三等奖,一等奖奖金15元,二等奖奖金10元,三等奖奖金5元,活动以来,中奖结果统计如图所示:

消费者甲购买了238元的商品,准备参加抽奖,以频率作为概率,解答下列各题:
(1)求甲恰有一次获得一等奖的概率;
(2)求甲获得20元奖金的概率;
(3)记甲获得奖金金额为,求的数学期望
当前题号:5 | 题型:解答题 | 难度:0.99
本着健康、低碳的生活理念,租用公共自行车的人越来越多.租用公共自行车的收费标准是每车每次不超过两小时免费,超过两小时的部分每小时2元(不足1小时的部分按1小时计算).甲乙两人相互独立租车(各租一车一次).设甲、乙不超过两小时还车的概率分别为;两小时以上且不超过三小时还车的概率分别为;两人租车时间都不会超过四小时.
(1)求出甲、乙所付租车费用相同的概率;
(2)设甲、乙两人所付的租车费用之和为随机变量,求随机变量的概率分布和期望.
当前题号:6 | 题型:解答题 | 难度:0.99
每逢节假日,在微信好友群中发红包逐渐成为一种时尚,还能增进彼此的感情,2016年春节期间,小鲁在自己的微信好友群中,向在线的甲、乙、丙、丁四位好友随机发放红包,发放的规则为:每次发放一个,小鲁自己不抢,每个人抢到的概率相同.
(1)若小鲁随机发放了3个红包,求甲至少抢到一个红包的概率;
(2)若丁因有事暂时离线一段时间,而小鲁在这段时间内共发了3个红包,其中2个红包中各有10元,一个红包中有5元.设这段时间内乙所得红包的总钱数为元,求随机变量的分布列和数学期望.
当前题号:7 | 题型:解答题 | 难度:0.99
某学校在一次第二课堂活动中,特意设置了过关智力游戏,游戏共五关.规定第一关没过者没奖励,过 关者奖励件小奖品(奖品都一样).下图是小明在10次过关游戏中过关数的条形图,以此频率估计概率.

(Ⅰ)估计小明在1次游戏中所得奖品数的期望值;

(Ⅱ)估计小明在3 次游戏中至少过两关的平均次数;

(Ⅲ)估计小明在3 次游戏中所得奖品超过30件的概率.

当前题号:8 | 题型:解答题 | 难度:0.99
某地区试行高考英语考试改革:每年举行2次英语学业水平统一测试,但考生只能从高二开始参加该测试,一共可参加4次测试,测试成绩分为优秀、良好、合格、不合格四类,小张计划从高二开始就参加该测试,并且获得优秀后不再参加测试,假设他在高二年级参加考试获得优秀的概率为,在高三参加考试获得优秀的概率为.
(1)求小张在第三次测试才获得优秀的概率;
(2)规定小张测试优秀或参加完4次测试就结束,记结束时小张参加考试的次数为,求随机变量的分布列和数学期望.
当前题号:9 | 题型:解答题 | 难度:0.99
甲、乙、丙三人各自独立的破译一个密码,假定它们译出密码的概率都是,且相互独立,则至少两人译出密码的概率为___________.
当前题号:10 | 题型:填空题 | 难度:0.99