- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 离散型随机变量及其分布列
- + 二项分布及其应用
- 条件概率
- 事件的独立性
- 独立重复试验
- 二项分布
- 离散型随机变量的均值与方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
桌面上有两颗均匀的骰子(
个面上分别标有数字
).将桌面上骰子全部抛掷在桌面上,然后拿掉那些朝上点数为奇数的骰子,如果桌面上没有了骰子,停止抛掷,如果桌面上还有骰子,继续抛掷桌面上的剩余骰子. 记抛掷两次之内(含两次)去掉的骰子的颗数为
.
(Ⅰ)求
;
(Ⅱ)求
的分布列及期望
.



(Ⅰ)求

(Ⅱ)求


已知某射手射击一次,击中目标的概率是
.
(1)求连续射击5次,恰有3次击中目标的概率;
(2)求连续射击5次,的数学期望和方差.
(3)假设连续2次未击中目标,则中止其射击,求恰好射击5次后,被中止射击的概率.(本题结果用分数表示即可).

(1)求连续射击5次,恰有3次击中目标的概率;
(2)求连续射击5次,的数学期望和方差.
(3)假设连续2次未击中目标,则中止其射击,求恰好射击5次后,被中止射击的概率.(本题结果用分数表示即可).
某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进行第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品的合格率依次为
,
,
.经过第二次烧制后,甲、乙、丙三件产品的合格率均为
.
(Ⅰ)求第一次烧制后恰有一件产品合格的概率;
(Ⅱ)求经过前后两次烧制后三件产品均合格的概率.




(Ⅰ)求第一次烧制后恰有一件产品合格的概率;
(Ⅱ)求经过前后两次烧制后三件产品均合格的概率.
因冰雪灾害,某柑橘基地果林严重收损,为此有关专家提出一种拯救果树的方案,该方案需分两年实施且相互独立.该方案预计第一年可以使柑橘产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.2、0.4、0.4;第二年可以使柑橘产量为第一年的1.5倍、1.25倍、1.0倍的概率分别是0.3、0.3、0.4,求两年后柑橘产量恰好达到灾前产量的概率_____________
某机械零件加工由
道工序组成,第
道工序的废品率为
,第
道工序的废品率为
,假定这两道工序出废品是彼此无关的,那么产品的废品率是____________.





某射手A第n次射击时击中靶心的概率为

(1)求A射击5次,直到第5次才击中靶心的概率P;
(2)若A共射击3次,求恰好击中1次靶心的概率。
假定某射手每次射击命中的概率为



求:(1)目标被击中的概率;
(2)

(3)均值

抛掷一枚硬币,出现正面向上记1分,出现反面向上记2分,若一共抛出硬币4次,且每一次抛掷的结果相互之间没有影响,则得6分的概率为( )
A.![]() | B.![]() | C.![]() | D.![]() |