- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
甲,乙二人进行乒乓球比赛,已知每一局比赛甲胜乙的概率是
,假设每局比赛结果相互独立.
(Ⅰ)比赛采用三局两胜制,即先获得两局胜利的一方为获胜方,这时比赛结束.求在一场比赛中甲获得比赛胜利的概率;
(Ⅱ)比赛采用三局两胜制,设随机变量
为甲在一场比赛中获胜的局数,求
的分布列和均值;
(Ⅲ)有以下两种比赛方案:方案一,比赛采用五局三胜制;方案二,比赛采用七局四胜制.问哪个方案对甲更有利.(只要求直接写出结果)

(Ⅰ)比赛采用三局两胜制,即先获得两局胜利的一方为获胜方,这时比赛结束.求在一场比赛中甲获得比赛胜利的概率;
(Ⅱ)比赛采用三局两胜制,设随机变量


(Ⅲ)有以下两种比赛方案:方案一,比赛采用五局三胜制;方案二,比赛采用七局四胜制.问哪个方案对甲更有利.(只要求直接写出结果)
某学校为了丰富学生的课余生活,以班级为单位组织学生开展古诗词背诵比赛,随机抽取一首,背诵正确加10分,背诵错误减10分,且背诵结果只有“正确”和“错误”两种.其中某班级学生背诵正确的概率
,记该班级完成
首背诵后的总得分为
.
(1)求
且
的概率;
(2)记
,求
的分布列及数学期望.



(1)求


(2)记


一台机器在一天内发生故障的概率为
,若这台机器一周
个工作日不发生故障,可获利
万元;发生
次故障获利为
万元;发生
次或
次以上故障要亏损
万元,这台机器一周
个工作日内可能获利的数学期望是( )万元.(已知
,
)











A.![]() | B.![]() | C.![]() | D.![]() |
约定乒乓球比赛无平局且实行
局
胜制,甲、乙二人进行乒乓球比赛,甲每局取胜的概率为
.
(1)试求甲赢得比赛的概率;
(2)当
时,胜者获得奖金
元,在第一局比赛甲获胜后,因特殊原因要终止比赛.试问应当如何分配奖金最恰当?



(1)试求甲赢得比赛的概率;
(2)当


近年来,共享单车已经悄然进入了广大市民的日常生活,并慢慢改变了人们的出行方式.为了更好地服务民众,某共享单车公司在其官方
中设置了用户评价反馈系统,以了解用户对车辆状况和优惠活动的评价.现从评价系统中选出
条较为详细的评价信息进行统计,车辆状况的优惠活动评价的
列联表如下:
(1)能否在犯错误的概率不超过
的前提下认为优惠活动好评与车辆状况好评之间有关系?
(2)为了回馈用户,公司通过
向用户随机派送每张面额为
元,
元,
元的 三种骑行券.用户每次使用
扫码用车后,都可获得一张骑行券.用户骑行一次获得
元券,获得
元券的概率分别是
,
,且各次获取骑行券的结果相互独立.若某用户一天使用了两次该公司的共享单车,记该用户当天获得的骑行券面额之和为
,求随机变量
的分布列和数学期望.
参考数据:
参考公式:
,其中
.



| 对优惠活动好评 | 对优惠活动不满意 | 合计 |
对车辆状况好评 | ![]() | ![]() | ![]() |
对车辆状况不满意 | ![]() | ![]() | ![]() |
合计 | ![]() | ![]() | ![]() |
(1)能否在犯错误的概率不超过

(2)为了回馈用户,公司通过











参考数据:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
参考公式:


中国已经成为全球最大的电商市场,但是实体店仍然是消费者接触商品和品牌的重要渠道.某机构随机抽取了年龄介于10岁到60岁的消费者200人,对他们的主要购物方式进行问卷调查.现对调查对象的年龄分布及主要购物方式进行统计,得到如下图表:

(1)根据已知条件完成上述列联表,并据此资料,能否在犯错误的概率不超过
的前提下,认为消费者主要的购物方式与年龄有关?
(2)用分层抽样的方法从通过网络平台购物的消费者中随机抽取8人,然后再从这8名消费者中抽取5名进行答谢.设抽到的消费者中40岁以下的人数为
,求
的分布列和数学期望.
参考公式:
,其中
.
临界值表:

主要购物方式 年龄阶段 | 网络平台购物 | 实体店购物 | 总计 |
40岁以下 | 75 | | |
40岁或40岁以上 | | 55 | |
总计 | | | |
(1)根据已知条件完成上述列联表,并据此资料,能否在犯错误的概率不超过

(2)用分层抽样的方法从通过网络平台购物的消费者中随机抽取8人,然后再从这8名消费者中抽取5名进行答谢.设抽到的消费者中40岁以下的人数为


参考公式:


临界值表:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
现有2位男生,3位女生去参加一个联欢活动,该活动有甲、乙两个项目可供参加者选择.
(Ⅰ)为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个项目联欢,掷出点数为1或2的人去参加甲项目联欢,掷出点数大于2的人去参加乙项目联欢.求这5人中恰好有3人去参加甲项目联欢的概率;
(Ⅱ)若从这5人中随机选派3人去参加甲项目联欢,设
表示这3个人中女生的人数,求随机变量
的分布列与数学期望.
(Ⅰ)为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个项目联欢,掷出点数为1或2的人去参加甲项目联欢,掷出点数大于2的人去参加乙项目联欢.求这5人中恰好有3人去参加甲项目联欢的概率;
(Ⅱ)若从这5人中随机选派3人去参加甲项目联欢,设


从甲地到乙地要经过
个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为
,
,
.
(
)设
表示一辆车从甲地到乙地遇到红灯的个数,求随机变量
的分布列和均值.
(
)若有
辆车独立地从甲地到乙地,求这
辆车共遇到
个红灯的概率.




(



(




近年来,我国大力发展新能源汽车工业,新能源汽车(含电动汽车)销量已跃居全球首位.某电动汽车厂新开发了一款电动汽车,并对该电动汽车的电池使用情况进行了测试,其中剩余电量
与行驶时间
(单位:小时)的测试数据如下:
如果剩余电量不足
,则电池就需要充电.
(1)从
组数据中选出
组作回归分析,设
表示需要充电的数据组数,求
的分布列及数学期望;
(2)根据电池放电的特点,剩余电量
与时间
工满足经验关系式:
,通过散点图可以发现
与
之间具有相关性.设
,利用表格中的前
组数据求相关系数
,并判断是否有
的把握认为
与
之间具有线性相关关系.(当相关系数
满足
时,则认为
的把握认为两个变量具有线性相关关系);
(3)利用
与
的相关性及前
组数据求出
与工的回归方程.(结果保留两位小数)
附录:相关数据:
,
,
,
.
前9组数据的一些相关量:
相关公式:对于样本
.其回归直线
的斜率和截距的最小二乘估计公式分别为:
,
,相关系数
.


![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
如果剩余电量不足

(1)从




(2)根据电池放电的特点,剩余电量














(3)利用




附录:相关数据:




前9组数据的一些相关量:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
合计 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
相关公式:对于样本





改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月对甲、乙两种移动支付方式的使用情况,从全校学生中随机抽取了100人作为样本,发现样本中甲、乙两种支付方式都不使用的有10人,样本中仅使用甲种支付方式和仅使用乙种支付方式的学生的支付金额分布情况如下:
(1)从全校学生中随机抽取1人,估计该学生上个月甲、乙两种支付方式都使用的概率;
(2)从样本中仅使用甲种支付方式和仅使用乙种支付方式的学生中各随机抽取1人,以
表示这2人中上个月支付金额大于500元的人数,用频率近似代替概率,求
的分布列和数学期望
支付金额(元) 支付方式 | ![]() | ![]() | 大于1000 |
仅使用甲 | 15人 | 8人 | 2人 |
仅使用乙 | 10人 | 9人 | 1人 |
(1)从全校学生中随机抽取1人,估计该学生上个月甲、乙两种支付方式都使用的概率;
(2)从样本中仅使用甲种支付方式和仅使用乙种支付方式的学生中各随机抽取1人,以

