- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
甲将要参加某决赛,赛前
,
,
,
四位同学对冠军得主进行竞猜,每人选择一名选手,已知
,
选择甲的概率均为
,
,
选择甲的概率均为
,且四人同时选择甲的概率为
,四人均末选择甲的概率为
.
(1)求
,
的值;
(2)设四位同学中选择甲的人数为
,求
的分布列和数学期望.












(1)求


(2)设四位同学中选择甲的人数为


已知某单位甲、乙、丙三个部门共有员工60人,为调查他们的睡眠情况,通过分层抽样获得部分员工每天睡眠的时间,数据如下表(单位:小时)
(1)求该单位乙部门的员工人数?
(2)从甲部门和乙部门抽出的员工中,各随机选取一人,甲部门选出的员工记为A,乙部门选出的员工记为B,假设所有员工睡眠的时间相互独立,求A的睡眠时间不少于B的睡眠时间的概率;
(3)若将每天睡眠时间不少于7小时视为睡眠充足,现从丙部门抽出的员工中随机抽取3人做进一步的身体检查.用X表示抽取的3人中睡眠充足的员工人数,求随机变量X的分布列与数学期望.
甲部门 | 6 | 7 | 8 | | | |
乙部门 | 5.5 | 6 | 6.5 | 7 | 7.5 | 8 |
丙部门 | 5 | 5.5 | 6 | 6.5 | 7 | 8.5 |
(1)求该单位乙部门的员工人数?
(2)从甲部门和乙部门抽出的员工中,各随机选取一人,甲部门选出的员工记为A,乙部门选出的员工记为B,假设所有员工睡眠的时间相互独立,求A的睡眠时间不少于B的睡眠时间的概率;
(3)若将每天睡眠时间不少于7小时视为睡眠充足,现从丙部门抽出的员工中随机抽取3人做进一步的身体检查.用X表示抽取的3人中睡眠充足的员工人数,求随机变量X的分布列与数学期望.
袋中装有9只球,其中标有数字1,2,3,4的小球各2个,标数字5的小球有1个.从袋中任取3个小球,每个小球被取出的可能性都相等,用
表示取出的3个小球上的最大数字.
(1)求取出的3个小球上的数字互不相同的概率;
(2)求随机变量
的分布列和期望.

(1)求取出的3个小球上的数字互不相同的概率;
(2)求随机变量

某“双一流”大学专业奖学金是以所学专业各科考试成绩作为评选依据,分为专业一等奖学金(奖金额
元)、专业二等奖学金(奖金额
元)及专业三等奖学金(奖金额
元),且专业奖学金每个学生一年最多只能获得一次.图(1)是统计了该校
年
名学生周课外平均学习时间频率分布直方图,图(2)是这
名学生在
年周课外平均学习时间段获得专业奖学金的频率柱状图.

(Ⅰ)求这
名学生中获得专业三等奖学金的人数;
(Ⅱ)若周课外平均学习时间超过
小时称为“努力型”学生,否则称为“非努力型”学生,列
联表并判断是否有
的把握认为该校学生获得专业一、二等奖学金与是否是“努力型”学生有关?
(Ⅲ)若以频率作为概率,从该校任选一名学生,记该学生
年获得的专业奖学金额为随机变量
,求随机变量
的分布列和期望.









(Ⅰ)求这

(Ⅱ)若周课外平均学习时间超过



(Ⅲ)若以频率作为概率,从该校任选一名学生,记该学生





4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动.为了解高三学生课外阅读情况,采用分层抽样的方法从高三某班甲、乙、丙、丁四个小组中随机抽取10名学生参加问卷调查.各组人数统计如下:

(1)从参加问卷调查的10名学生中随机抽取两名,求这两名学生来自同一个小组的概率;
(2)在参加问卷调查的10名学生中,从来自甲、丙两个小组的学生中随机抽取两名,用
表示抽得甲组学生的人数,求
的分布列和数学期望.

(1)从参加问卷调查的10名学生中随机抽取两名,求这两名学生来自同一个小组的概率;
(2)在参加问卷调查的10名学生中,从来自甲、丙两个小组的学生中随机抽取两名,用


2019年高考刚过,为了解考生对全国2卷数学试卷难度的评价,随机抽取了某学校50名男考生与50名女考生,得到下面的列联表:
(1)分别估计该学校男考生、女考生觉得全国2卷数学试卷非常困难的概率;
(2)从该学校随机抽取3名男考生,2名女考生,求恰有4名考生觉得全国2卷数学试卷非常困难的概率.
| 非常困难 | 一般 |
男考生 | 20 | 30 |
女考生 | 40 | 10 |
(1)分别估计该学校男考生、女考生觉得全国2卷数学试卷非常困难的概率;
(2)从该学校随机抽取3名男考生,2名女考生,求恰有4名考生觉得全国2卷数学试卷非常困难的概率.
某仪器经过检验合格才能出厂,初检合格率为
;若初检不合格,则需要进行调试,经调试后再次对其进行检验;若仍不合格,作为废品处理,再检合格率为
.每台仪器各项费用如表:
(1)求每台仪器能出厂的概率;
(2)求生产一台仪器所获得的利润为
元的概率(注:利润=出厂价-生产成本-检验费-调试费);
(3)假设每台仪器是否合格相互独立,记
为生产两台仪器所获得的利润,求
的分布列和数学期望.


项目 | 生产成本 | 检验费/次 | 调试费 | 出厂价 |
金额(元) | ![]() | ![]() | ![]() | ![]() |
(1)求每台仪器能出厂的概率;
(2)求生产一台仪器所获得的利润为

(3)假设每台仪器是否合格相互独立,记


某地有种特产水果很受当地老百姓欢迎,但该种水果只能在9月份销售,且该种水果只能当天食用口感最好,隔天食用口感较差.某超市每年9月份都销售该特产水果,每天计划进货量相同,进货成本每公斤8元,销售价每公斤12元;当天未卖出的水果则转卖给水果罐头厂,但每公斤只能卖到5元.根据往年销售经验,每天需求量与当地气温范围有一定关系.如果气温不低于30度,需求量为5000公斤;如果气温位于
,需求量为3500公斤;如果气温低于25度,需求量为2000公斤;为了制定今年9月份订购计划,统计了前三年9月份的气温范围数据,得下面的频数分布表
以气温范围位于各区间的频率代替气温范围位于该区间的概率.
(1)求今年9月份这种水果一天需求量
(单位:公斤)的分布列和数学期望;
(2)设9月份一天销售特产水果的利润为
(单位:元),当9月份这种水果一天的进货量为
(单位:公斤)为多少时,
的数学期望达到最大值,最大值为多少?

气温范围 | ![]() | ![]() | ![]() | ![]() | ![]() |
天数 | 4 | 14 | 36 | 21 | 15 |
以气温范围位于各区间的频率代替气温范围位于该区间的概率.
(1)求今年9月份这种水果一天需求量

(2)设9月份一天销售特产水果的利润为



某商品促销活动设计了一个摸奖游戏:在一个口袋中装有4个红球和6个白球,这些球除颜色外完全相同,顾客一次从中摸出3个球,若3个都是白球则无奖励,若有1个红球则奖励10元购物券,若有2个红球则奖励20元购物券,若3个都是红球则奖励30元购物券.
(Ⅰ)求中奖的概率;
(Ⅱ)求顾客摸奖一次获得购物券奖励的平均值.
(Ⅰ)求中奖的概率;
(Ⅱ)求顾客摸奖一次获得购物券奖励的平均值.



















(1)若两个顾客均分别消费了

(2)若某顾客消费恰好满
