刷题首页
题库
高中数学
题干
甲,乙二人进行乒乓球比赛,已知每一局比赛甲胜乙的概率是
,假设每局比赛结果相互独立.
(Ⅰ)比赛采用三局两胜制,即先获得两局胜利的一方为获胜方,这时比赛结束.求在一场比赛中甲获得比赛胜利的概率;
(Ⅱ)比赛采用三局两胜制,设随机变量
为甲在一场比赛中获胜的局数,求
的分布列和均值;
(Ⅲ)有以下两种比赛方案:方案一,比赛采用五局三胜制;方案二,比赛采用七局四胜制.问哪个方案对甲更有利.(只要求直接写出结果)
上一题
下一题
0.99难度 解答题 更新时间:2019-09-28 02:39:26
答案(点此获取答案解析)
同类题1
甲、乙两人同时参加一个外贸公司的招聘,招聘分笔试与面试两部分,先笔试后面试
.
甲笔试与面试通过的概率分别为0
.
8,0
.
5,乙笔试与面试通过的概率分别为0
.
8,0
.
4,且笔试通过了才能进入面试,面试通过则直接招聘录用,两人笔试与面试相互独立互不影响
.
(1)求这两人至少有一人通过笔试的概率;
(2)求这两人笔试都通过却都未被录用的概率;
(3)记这两人中最终被录用的人数为
X
,求
X
的分布列和数学期望
.
同类题2
某超市在节日期间进行有奖促销,凡在该超市购物满
元的顾客,将获得一次摸奖机会,规则如下:一个袋子装有
只形状和大小均相同的玻璃球,其中两只是红色,三只是绿色,顾客从袋子中一次摸出两只球,若两只球都是红色,则奖励
元;共两只球都是绿色,则奖励
元;若两只球颜色不同,则不奖励.
(1)求一名顾客在一次摸奖活动中获得
元的概率;
(2)记
为两名顾客参与该摸奖活动获得的奖励总数额,求随机变量
的分布列和数学期望.
同类题3
将编号为1,2,3,4的4个小球随机放到A、B、C三个不同的小盒中,每个小盒至少放一个小球.
(Ⅰ)求编号为1, 2的小球同时放到A盒的概率;
(Ⅱ)设随机变量
为放入A盒的小球的个数,求
的分布列与数学期望.
同类题4
随着共享单车的成功运营,更多的共享产品逐步走人大家的世界,共享汽车、共享篮球、共享充电宝等各种共享产品层出不穷
广元某景点设有共享电动车租车点,共享电动车的收费标准是每小时2元
不足1小时的部分按1小时计算
甲、乙两人各租一辆电动车,若甲、乙不超过一小时还车的概率分别为
;一小时以上且不超过两小时还车的概率分别为
;两人租车时间都不会超过三小时.
Ⅰ
求甲、乙两人所付租车费用相同的概率;
Ⅱ
设甲、乙两人所付的租车费用之和为随机变量
,求
的分布列与数学期望
.
同类题5
甲、乙两人对弈棋局,甲胜、乙胜、和棋的概率都是
,规定有一方累计2胜或者累计2和时,棋局结束.棋局结束时,若是累计两和的情形,则宣布甲乙都获得冠军;若一方累计2胜,则宣布该方获得冠军,另一方获得亚军.设结束时对弈的总局数为X.
(1)设事件A:“X=3且甲获得冠军”,求A的概率;
(2)求X的分布列和数学期望.
相关知识点
计数原理与概率统计
随机变量及其分布
离散型随机变量及其分布列
离散型随机变量的分布列
写出简单离散型随机变量分布列
独立事件的乘法公式