- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
2017年5月14日,第一届“一带一路”国际高峰论坛在北京举行,为了解不同年龄的人对“一带一路”关注程度,某机构随机抽取了年龄在15-75岁之间的100人进行调查,经统计“青少年”与“中老年”的人数之比为
.
(1)根据已知条件完成上面的
列联表,并判断能否有99%的把握认为关注“一带一路”是否和年龄段有关?
(2)现从抽取的青少年中采用分层抽样的办法选取9人进行问卷调查.在这9人中再选取3人进行面对面询问,记选取的3人中关注“一带一路”的人数为X,求X的分布列及数学期望.
附:参考公式
,其中
.
临界值表:

| 关注 | 不关注 | 合计 |
青少年 | 15 | | |
中老年 | | | |
合计 | 50 | 50 | 100 |
(1)根据已知条件完成上面的

(2)现从抽取的青少年中采用分层抽样的办法选取9人进行问卷调查.在这9人中再选取3人进行面对面询问,记选取的3人中关注“一带一路”的人数为X,求X的分布列及数学期望.
附:参考公式


临界值表:
![]() | 0.05 | 0.010 | 0.001 |
![]() | 3.841 | 6.635 | 10.828 |
甲、乙两人各进行3次投篮,甲每次投中目标的概率为
,乙每次投中目标的概率为
,假设两人投篮是否投中相互之间没有影响,每次投篮是否投中相互之间也没有影响。
(1)求甲至少有一次未投中目标的概率;
(2)记甲投中目标的次数为
,求
的概率分布及数学期望;
(3)求甲恰好比乙多投中目标2次的概率.


(1)求甲至少有一次未投中目标的概率;
(2)记甲投中目标的次数为


(3)求甲恰好比乙多投中目标2次的概率.
为促进义务教育的均衡发展,各地实行免试就近入学政策,某地区随机调查了
人,他们年龄的频数分布及赞同“就近入学”人数如表:
(Ⅰ)在该样本中随机抽取
人,求至少
人支持“就近入学”的概率;
(Ⅱ)若对年龄在
,
的被调查人中各随机选取
两人进行调查,记选中的
人支持“就近入学”人数为
,求随机变量
的分布列及数学期望。

年龄 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
赞同 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(Ⅰ)在该样本中随机抽取


(Ⅱ)若对年龄在






近年来,网络电商已经悄然进入了广大市民的日常生活,并慢慢改变了人们的消费方式为了更好地服务民众,某电商在其官方APP中设置了用户评价反馈系统,以了解用户对商品状况和优惠活动的评价现从评价系统中随机抽出200条较为详细的评价信息进行统计,商品状况和优惠活动评价的2×2列联表如下:
(I)能否在犯错误的概率不超过0.001的前提下认为优惠活动好评与商品状况好评之间有关系?
(Ⅱ)为了回馈用户,公司通过APP向用户随机派送每张面额为0元,1元,2元的三种优惠券用户每次使用APP购物后,都可获得一张优惠券,且购物一次获得1元优惠券,2元优惠券的概率分别是
,
,各次获取优惠券的结果相互独立若某用户一天使用了APP购物两次,记该用户当天获得的优惠券面额之和为X,求随机变量X的分布列和数学期望.
参考数据
参考公式:K2
,其中n=a+b+c+d
| 对优惠活动好评 | 对优惠活动不满意 | 合计 |
对商品状况好评 | 100 | 20 | 120 |
对商品状况不满意 | 50 | 30 | 80 |
合计 | 150 | 50 | 200 |
(I)能否在犯错误的概率不超过0.001的前提下认为优惠活动好评与商品状况好评之间有关系?
(Ⅱ)为了回馈用户,公司通过APP向用户随机派送每张面额为0元,1元,2元的三种优惠券用户每次使用APP购物后,都可获得一张优惠券,且购物一次获得1元优惠券,2元优惠券的概率分别是


参考数据
P(K2≥k) | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:K2

羽毛球比赛中采用每球得分制,即每回合中胜方得1分,负方得0分,每回合由上回合的胜方发球.设在甲、乙的比赛中,每回合发球,发球方得1分的概率为0.6,各回合发球的胜负结果相互独立.若在一局比赛中,甲先发球.
(1)求比赛进行3个回合后,甲与乙的比分为
的概率;
(2)
表示3个回合后乙的得分,求
的分布列与数学期望.
(1)求比赛进行3个回合后,甲与乙的比分为

(2)


某市环保部门对该市市民进行了一次垃圾分类知识的网络问卷调查,每一位市民仅有一次参加机会,通过随机抽样,得到参加问卷调查的
人的得分(满分:
分)数据,统计结果如下表所示.
(1)已知此次问卷调查的得分
服从正态分布
,
近似为这
人得分的平均值(同一组中的数据用该组区间的中点值为代表),请利用正态分布的知识求
;
(2)在(1)的条件下,环保部门为此次参加问卷调查的市民制定如下奖励方案.
(ⅰ)得分不低于
的可以获赠
次随机话费,得分低于
的可以获赠
次随机话费;
(ⅱ)每次赠送的随机话费和相应的概率如下表.
现市民甲要参加此次问卷调查,记
为该市民参加问卷调查获赠的话费,求
的分布列及数学期望.
附:
,若
,则
,
,
.


组别 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)已知此次问卷调查的得分





(2)在(1)的条件下,环保部门为此次参加问卷调查的市民制定如下奖励方案.
(ⅰ)得分不低于




(ⅱ)每次赠送的随机话费和相应的概率如下表.
赠送的随机话费/元 | ![]() | ![]() |
概率 | ![]() | ![]() |
现市民甲要参加此次问卷调查,记


附:





某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会.
设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;
设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.


某中学利用周末组织教职员工进行了一次秋季登山健身的活动,有
个人参加。现将所有参加者按年龄情况分为
等七组.其频率分布直方图如图所示,已知
这组的参加者是6人。

(I)根据此频率分布直方图求
;
(II)组织者从
这组的参加者(其中共有4名女教师,其余全为男教师)中随机选取3名担任后勤保障工作,其中女教师的人数为
,求
的分布列、均值及方差.
(Ⅲ)已知
和
这两组各有2名数学教师。现从这两个组中各选取2人担任接待工作,设两组的选择互不影响,求两组选出的人中恰有1名数学老师的概率




(I)根据此频率分布直方图求

(II)组织者从



(Ⅲ)已知


某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:
)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间
,需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:

以最高气温位于各区间的频率估计最高气温位于该区间的概率.
(1)求六月份这种酸奶一天的需求量
(单位:瓶)的分布列;
(2)设六月份一天销售这种酸奶的利润为
(单位:元),当六月份这种酸奶一天的进货量
(单位:瓶)为多少时,
的数学期望达到最大值?



以最高气温位于各区间的频率估计最高气温位于该区间的概率.
(1)求六月份这种酸奶一天的需求量

(2)设六月份一天销售这种酸奶的利润为



某客户准备在家中安装一套净水系统,该系统为三级过滤,使用寿命为十年.如图所示,两个一级过滤器采用并联安装,二级过滤器与三级过滤器为串联安装.其中每一级过滤都由核心部件滤芯来实现,在使用过程中,一级滤芯和二级滤芯都需要不定期更换(每个滤芯是否需要更换相互独立),三级滤芯无需更换,若客户在安装净水系统的同时购买滤芯,则一级滤芯每个80元,二级滤芯每个160元.若客户在使用过程中单独购买滤芯,则一级滤芯每个200元,二级滤芯每个400元,现需决策安装净水系统的同时购滤芯的数量,为此参考了根据100套该款净水系统在十年使用期内更换滤芯的相关数据制成的图表,其中图是根据200个一级过滤器更换的滤芯个数制成的柱状图,表是根据100个二级过滤器更换的滤芯个数制成的频数分布表:

二级滤芯更换频数分布表:
以200个一级过滤器更换滤芯的频率代替1个一级过滤器更换滤芯发生的概率,以100个二级过滤器更换滤芯的频率代替1个二级过滤器更换滤芯发生的概率.

(1)求一套净水系统在使用期内需要更换的各级滤芯总个数恰好为30的概率;
(2)记
表示该客户的净水系统在使用期内需要更换的一级滤芯总数,求
的分布列及数学期望;
(3)记
,
分别表示该客户在安装净水系统的同时购买的一级滤芯和二级滤芯的个数.若
,且
,以该客户的净水系统在使用期内购买各级滤芯所需总费用的期望值为决策依据,试确定
,
的值.

二级滤芯更换频数分布表:
二级滤芯更换的个数 | 5 | 6 |
频数 | 60 | 40 |
以200个一级过滤器更换滤芯的频率代替1个一级过滤器更换滤芯发生的概率,以100个二级过滤器更换滤芯的频率代替1个二级过滤器更换滤芯发生的概率.

(1)求一套净水系统在使用期内需要更换的各级滤芯总个数恰好为30的概率;
(2)记


(3)记





